Bayesian Detection of Router Configuration Anomalies

Khalid El-Arini

Computer Science Department
Carnegie Mellon University
kbe@cs.cmu.edu

Abstract

Problems arising from router misconfigurations cost
time and money. The first step in fixing such miscon-
figurations is finding them. Previous efforts to solve
this problem have depended on an a priori model of
what constitutes a correct configuration and are lim-
ited to finding deviations from this model, but fail to
detect misconfigurations that are uncommon or unex-
pected.

In this paper, we propose a method for detecting
misconfigurations that does not rely on a priori ex-
pectations of their form. Our hypothesis is that mis-
configurations in router data can be identified as sta-
tistical anomalies within a Bayesian framework.

We present three detection algorithms based on this
framework and show that they are able to detect er-
rors in the router configuration files of a university
network. We show how these algorithms detect cer-
tain types of misconfiguration successfully, and discuss
how they could be extended to detect more subtle mis-
configurations.

1 Introduction

On January 23, 2001, Microsoft’s websites went
down for nearly 23 hours. The next day, Microsoft
spokesman Adam Sohn attributed the failure to a
“configuration change to the routers on the DNS net-
work” [1]. This example highlights the critical prob-
lem of router misconfiguration. Since companies rely
on the availability of their networks, such misconfigu-
rations are costly. They are also extremely common,
as networks typically contain between 10 and 1000
routers. Each router is individually configured with
its own router comfiguration file, which can contain
several thousand lines of commands. As a network
evolves over time, each file is individually edited to add
and remove commands. While the syntactic correct-
ness of each file can be verified, determining semantic
correctness and consistency across all the router con-

Kevin Killourhy
Dependable Systems Laboratory
Computer Science Department
Carnegie Mellon University
ksk@cs.cmu.edu

figuration files in a network is a much harder problem.
Due to the magnitude of this problem, our goal is to
develop a method that automatically identifies seman-
tic mistakes among the set of router configuration files
that define each network.

Previous approaches to this problem require an a
priori expectation of what these configuration files
should look like. For example, if the expectation is
that BGP is enabled in all routers, the prior approach
would be to write a tool to check that BGP actually
is enabled. Our work differs in that we make no such
assumptions about the structure of router configura-
tions. By estimating the probabilities of certain con-
figurations, we can detect potential errors as anoma-
lies. For example, we could detect that it is highly
unlikely for BGP to be disabled.

We designed and tested three anomaly detection al-
gorithms on router configuration data obtained from
the Carnegie Mellon University campus network. This
group of configuration files has been modified exten-
sively over the years, and those familiar with this pro-
cess indicate that errors are to be expected. For this
reason, it is an appropriate data set on which to eval-
uate our algorithms.

2 Related Work

Our work is largely inspired by a suggestion made
by Caldwell et al. [2]. They noted that network de-
sign choices might be inferred by commonalities across
router configuration files, and that these might be
learned automatically and codified as rules. As an
example, they noted that “if 99 of 100 routers have
the finger daemon disabled, the inferred rule would
be ‘the finger daemon should be disabled’” and the ex-
ception would be the one non-compliant router.” Our
work does not directly employ a rule learner, but our
algorithms detect such misconfigurations as statistical
anomalies just the same.

Feldmann and Rexford [3] parsed Cisco I0OS configu-
ration files and performed checks for known misconfig-

urations or inconsistencies. For example, the authors
knew that in the AT&T environment, BGP should al-
ways be enabled. As such, they are able to check all
the router configuration files to see that the command
enabling BGP is present. Our work is more general
in that it discovers unknown patterns in the data and
detects when those patterns are violated (e.g., detect-
ing that BGP is disabled in one router but enabled in
99 others).

Maltz et al. [4] also used Cisco IOS configuration
files in their study of routing design in operational
networks. Like Feldmann and Rexford, they extracted
information that they knew would be useful in their
analysis. For example, they wanted to investigate the
use of access lists and whether these were applied to
internal traffic or just traffic crossing AS borders. To
complete this investigation, they extracted the access
lists from the router configuration files.

3 Problem and Approach

Router misconfigurations are a problem due to the
high cost to network administrators in money, time,
and efficiency. Previous efforts to solve this problem
have depended on an a priori model of what consti-
tutes a correct configuration and are limited to finding
deviations from this model. Thus, they fail to detect
misconfigurations that fall outside of this model. Our
hypothesis is that misconfigurations in router data will
be identified as statistical anomalies within a Bayesian
framework. Building detectors that abide by this hy-
pothesis precludes the need to specify the exact types
of misconfiguration when performing the search.

Our approach is to build three detectors using this
Bayesian framework and to evaluate those detectors
on the Carnegie Mellon dataset. These detectors were
named according to the probability model that they
use: naive Bayes, joint Bayes, and structured Bayes.
Select misconfigurations in the data were manually
identified and the performance of the algorithms was
measured by how well, and with what overhead, these
misconfigurations were detected.

4 Router Data

The router configuration files of 24 Cisco IOS routers
were obtained from the Carnegie Mellon campus net-
work. Passwords and SNMP community names were
stripped from these files beforehand. Figure 1 shows
an excerpt of a Cisco IOS file. The I0S file format is
highly unstructured. A configuration is a sequence of
commands, many with multiple attributes and some
with no attributes. Many attributes appear after the

command name, some appear before the command
name, while others appear among the separate words
in the command name.

By converting these Cisco IOS configuration files
to a language-independent canonical form, we make
further manipulations of the files easier. Further, by
settling on a canonical form for router configuration
files, we leave open the possibility that our tools can
be applied to other router configuration file formats
(e.g., Juniper’s JUNOS).

5 Detection Algorithms

Three detection algorithms were designed and imple-
mented to test our hypothesis: naive Bayes, joint
Bayes, and structured Bayes. All three algorithms
consist of a training phase and a detection phase. The
training phase examines each line of every configura-
tion file and computes a set of key frequencies describ-
ing the commands and their arguments. The detection
phase makes a second pass through the files, using
these frequencies to find anomalies. Our algorithms
are akin to outlier detection, where a first phase to
compute mean and covariance is followed by a second
phase to identify outliers. In both cases, it is mean-
ingless to run the second phase on different data than
the first phase. This process differs from techniques
that demonstrate generalization, e.g., cross-validation,
that use separate training and test data sets.

5.1 Naive Bayes

The first algorithm makes the simplifying assumptions
that (1) each line of a configuration file is indepen-
dent of every other line and (2) for a given command,
each attribute is independent of every other attribute.
While these assumptions do not hold, in practice this
naive Bayes algorithm has been shown to perform well
in many such domains (e.g., text classification). This
algorithm estimates the probability of seeing a spe-
cific instance of a command (i.e., a single line in the
configuration file). Consider a line L in a configura-
tion file that consists of a command ¢ and attributes
(a1,az,...,a,). This algorithm estimates the prob-
ability of the line given the command P(L | ¢) as
the product of the conditional probabilities of each
attribute given the command:

P(L|e¢) = Plai,az,...,a,]c)

= HP(aZ— | ¢)

During the training phase, the algorithm estimates
these conditional probabilities from the router data.

1: version 12.1
2: no service pad

3: service timestamps debug datetime msec localtime show-timezone

Figure 1: A segment of a Cisco IOS configuration file

For each attribute a; and command ¢, the probability
of an attribute given the command is estimated as the
fraction of instances of the command ¢ that contain
a;. If we use #(c) to denote the number of times ¢
appears in the router data and #(a; | ¢) to denote the
number of times a; appears as an attribute of ¢, then
the probability P(a; | ¢) = %

During the detection phase, the algorithm computes
the conditional probability of each line of a configura-
tion file using these estimates. If the conditional prob-
ability of this line is significantly below its expected
value, the algorithm classifies the line as an anomaly.
Specifically, the algorithm makes the following com-
parison

P(L;|c) < aE[P(L|c)]

where L; is the i-th line of the file and « is an em-
pirically determined multiplier. Due to the fact that
individual commands vary in the number of attributes,
a general threshold across all commands in the config-
uration file would not produce accurate results. The
expected value allows the threshold to adapt to spe-
cific distributions. The « variable provides a tunable
parameter allowing the user to control the sensitivity
of the algorithm.

5.2 Joint Bayes

The second algorithm keeps the simplifying assump-
tion that each line of a configuration file is independent
of every other line. However, unlike naive Bayes, the
algorithm does not assume that attributes of a sin-
gle command are independent of one another. Con-
sider a line L in a configuration file that consists of a
command ¢ and attributes (a1, as,...,ay,). This algo-
rithm estimates the probability of the line given the
command P(L | ¢) as the joint probability of all the
attributes given the command
P(L|¢) = Plar,az,...,a,]c)

During the training phase, the algorithm estimates
these probabilities as follows. For each line L with
command ¢ and attributes aq,as,...,a,, the proba-
bility of the line given the command is estimated as
the fraction of instances of the command ¢ that con-
tain the entire sequence of attributes a; through a,.
If we again use #(c) to denote the number of times

command ¢ appears and we use #(ai,...,an | ¢)
to denote the number of times the sequence of at-

tributes appears for command ¢, then the probability

Sap | €)= 7#(“1%’0‘;" Lo),

The detection phase is similar to that of the naive
Bayes algorithm. We calculate the probability of a line
P(L; | ¢) using these estimates. The major difference
between this algorithm and the previous one is how
this probability is used to determine whether a line
is an anomaly. This decision must depend on more
than simply the probability of the line. Consider the
example of two commands, ¢; and co. Each command
appears 24 times, and each takes a single argument.
The command ¢; appears once with argument z; and
23 times with argument xo. The command ce appears
once with each argument y;, for i € {1,...,24}. The
lines “c; x1” and “co y1” both have equal probability
of occurring (one in 24). However, “c; x1” seems to be
an anomaly while “co y;” does not. To differentiate
between these two scenarios, we use entropy, a mea-
sure of how predictable a distribution is. Specifically,
we compute the entropy of each command,

H(e)=— Y P((a;) | c)log P((ai) | c),

(ai)eA

P(a,az,..

where A is the set of possible sequences of attributes
for this command and (a;) = (a1,as,...,a,) is a par-
ticular sequence. In our example, ¢; has low entropy
while ¢y has high entropy, thus a threshold weighted
by entropy will differentiate between the two cases.

If the conditional probability of this line is signifi-
cantly below the inverse of the entropy, the algorithm
classifies the line as an anomaly. Specifically, the al-
gorithm makes the following comparison

Q@
P(L; < —
(:16) < g7
where again L; is the ¢-th line and « is an empirically
determined multiplier.

5.3 Structured Bayes

The third algorithm also assumes that each line of the
configuration file is independent of every other line.
However it tries to strike a middle ground between
the first two algorithms, treating some attributes of a

command as mutually dependent and others as inde-
pendent. We manually selected attributes that appear
to be mutually dependent (e.g., the IP address and
subnet mask) and treated them as a single attribute.
While this algorithm does require a model of how ar-
guments appear grouped on a command line, it does
not require knowledge of what a correct configuration
file should contain. Our dependency is on the syntax
of the configuration language grammar rather than the
semantics of the configuration file. During the train-
ing phase, the probabilities of these attributes are es-
timated as in the naive Bayes algorithm. During the
detection phase, the probability of each line is calcu-
lated using these estimates, and then compared to the
entropy-based threshold as defined for joint Bayes.

6 Methodology

The Carnegie Mellon router configuration files were
used to assess the ability of these three algorithms to
detect misconfigurations. First, a set of potential mis-
configurations were found in the files and vetted by
a domain expert. Then, these three detection algo-
rithms were measured by their ability to find these
misconfigurations among the rest of the commands.

6.1 Finding Ground Truth

From the literature [2, 3], we defined three critical
types of misconfiguration, which we refer to as lone,
suppressed, and dangling commands.

Lone Command: We define a line to be a lone com-
mand if it is a unique usage of a popular com-
mand. For instance, if a command appears five
or more times and, in all occurrences but one,
it takes one set of attributes, the unique occur-
rence is called a lone command. While a lone
command is not necessarily a misconfiguration, it
is a strong indicator of a potential misconfigura-
tion (e.g., due to a typographical error).

Suppressed Command: We define a line to be a
suppressed command if the following two condi-
tions hold. First, it must be an access-list
command that permits or denies a certain traf-
fic pattern. Second, there is a prior access-1ist
command with the same group number that per-
forms the opposite action (i.e., deny or permit)
on the exact same traffic pattern. Such a com-
mand is evidence of a misconfiguration since it
contradicts other commands in the configuration
file.

e Lone Commands

1. ip ospf authentication null
(in pod-b-cyh)

2. exec-timeout 0 O
(in rtrbone)

3. version 12.2
(in rtrbone)

e Suppressed commands

1. access-list 2 permit any
access-list 2 deny any
(in campus)

2. access-1list 2 permit any
access-list 2 deny any
(in rtrbone)

e Dangling commands

1. ip access-group 198
(in pod-c-cyh)

2. ip access-group 133
(in core255)

Table 1: Table of the potential misconfigurations
found in the Carnegie Mellon router data

Dangling Commands: We define a line to be a dan-
gling command if it is an access-group com-
mand that applies an access list to an interface,
but that access list’s group number is never de-
fined later in the configuration file. Such a com-
mand is evidence of a misconfiguration because it
applies access restrictions that do not exist.

We built tools to manually identify occurrences of
these misconfigurations in the router data. By apply-
ing these tools to the Carnegie Mellon router data,
we found seven potential misconfigurations. They are
listed in Table 1. These tools were not used by our
detection algorithms. Rather, we evaluate our algo-
rithms by measuring their success at detecting the
misconfigurations discovered by these tools. In fact,
such tools that detect misconfigurations of a specific
form are exactly what our algorithms avoid.

To confirm that these potential misconfigurations
would be interesting to a network administrator, an
expert familiar with these configuration files and the
campus routing infrastructure reviewed them, and
agreed that they should be brought to the attention
of Computing Services.

Naive Joint Structured

Bayes Bayes Bayes
Lone 1 3666 2544 4503
Lone 2 2513 2 2612
Lone 3 2513 2 2612
Average | 2897.333 | 849.333 | 3242.333
Supp 1 3418 2543 1957
Supp 2 3418 2543 1957
Average 3418 2543 1957
Dang 1 5550 5598 5852
Dang 2 5071 4740 5706
Average | 5310.5 5169 o779

Table 2: A breakdown of the number of anomalies
generated in order to detect each of the seven miscon-
figurations

6.2 Evaluating Performance

Having found the seven occurrences of lone, sup-
pressed, and dangling commands in the Carnegie Mel-
lon data, we evaluate the sensitivity of our algorithms
by determining how many false positives are detected
along with each misconfiguration. False positives are
defined to be every line that is not a lone, suppressed,
or dangling command. However, such lines may be
evidence of a different type of misconfiguration.

Each of the three detectors was run on all 24 router
configuration files. As mentioned above, the train-
ing phase models the probability distribution of each
command, and the detection phase classifies individ-
ual commands as anomalies using these probabilities.
For each line, the minimum value of o necessary to
classify the line as an anomaly is computed. For each
of the potential misconfigurations, we determine the
number of commands that have a lower minimum o«
value. This count signifies the number of commands
that would also be classified as anomalies in addition
to the misconfiguration.

7 Results and Analysis

There are 11,128 commands across all the configura-
tion files, and thus 11,128 potential anomalies to be
detected. Table 2 shows the minimum number of lines
that are also classified as anomalies for each poten-
tial misconfiguration by each detector. For instance,
naive Bayes only detects the first lone command (Lone
1) as one of 3,666 other anomalies. Clearly, the ideal
case is when an algorithm detects no anomalies other
than the misconfigurations. The worst case is that all
11,128 lines must be detected as anomalies in order

for the misconfiguration to be found.

On average, joint Bayes detects the misconfigura-
tions with fewer spurious anomalies. In all cases, dan-
gling commands are the hardest misconfiguration to
find. Structured Bayes has the interesting character-
istic that it is the only algorithm to detect suppressed
commands before lone commands.

The series of graphs in Figure 2 shows a more precise
breakdown of the results for each detector. Figure 2
(a) shows the number of anomalies detected by naive
Bayes over the full range of threshold multipliers («).
The minimum « value needed to detect each of the
potential misconfigurations is plotted with annotation
on the curve. Figure 2 (b) shows the same graph of
anomalies detected for joint Bayes and Figure 2 (c) for
structured Bayes.

Note that the shape of these three curves is less im-
portant to the operation of the detector as the place-
ment of the potential misconfigurations on this curve.
The position of these points along the horizontal axis
determines the value of « needed to detect the poten-
tial misconfigurations with minimum overhead. The
position along the vertical axis determines this over-
head. Also, note that on Figures 2 (b) and (c), the
vertical jump in the number of anomalies detected at
the tail of each curve is a result of the entropy-based
threshold. Since lines that always occur in the same
format have an entropy of zero, they will never be de-
tected as anomalies by either detector. Thus, they
appear at the tail.

8 Discussion

Our results show that joint Bayes is able to detect po-
tential misconfigurations without also detecting other
anomalies. Lone commands 2 and 3 are immediately
detected by this detector while the other two detectors
are only able to detect them along with over 2,500 oth-
ers. This type of misconfiguration is specifically that
described by Caldwell et al. [2] as important to detect.

Further progress might be made in the detection of
router misconfigurations as anomalies if the assump-
tion of independence between commands is relaxed.
For instance, local context could help in the detection
of suppressed command misconfigurations. An algo-
rithm that is allowed to assume dependencies between
adjacent lines would be able to detect when one line
contradicts the other. Similarly, global context could
help in the detection of dangling commands. An al-
gorithm that is aware of dependencies between the
interface configuration and the access list declarations
could detect when an access list is missing. However,
whereas local context could be added while maintain-

Misconfigurations Detected by Naive Bayes
120001

10000

8000+

6000+

(Dang 1)
(Dang 2)

4000¢ (Lone 1)
(Supp 1), (Supp 2)
i (Lone 2), (Lone 3)

Number of anomalies detected

2000

4 6 8 10 12 14 16 18
Value of a, the threshold multiplier

(a): Naive Bayes

Misconfigurations Detected by Joint Bayes

120001

10000

80001

6000
(Dang 1)
(Dang 2)
4000

Number of anomalies detected

(Lone 1), (Supp 1), (Supp 2)
2000

o (Lone 2), (Lone 3))))
0 0.2 0.4 0.6 0.8 1
Value of a, the threshold multiplier

(b): Joint Bayes

Misconfigurations Detected by Structured Bayes
120001

100001

8000~

6000

(Dang 2)
(Lone 1)

4000

Number of anomalies detected

(Lone 2), (Lone 3)
20007 (Supp 1), (Supp 2)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
Value of a, the threshold multiplier

(c): Structured Bayes

Figure 2: A comparison of the threshold multiplier «
to the number of anomalies detected by each of the
three classifiers. The point at which each of the seven
potential misconfigurations is detected is plotted on
the curve.

ing the generality of these methods, global context
seems feasible only in very controlled settings, where
the structure of the files is taken into account.

9 Conclusion

The goal of this work was to determine whether
router misconfigurations could be detected without
prior knowledge of their form. Three detectors were
designed, implemented, and evaluated in this task.
These detectors were able to successfully detect cer-
tain types of potential misconfiguration in real-world
router configuration data.

10 Acknowledgments

The authors are grateful to David Maltz for his signifi-
cant contribution in providing us with data, reviewing
our results, and revising this paper.

References

[1] D. McCullagh, “How, why Microsoft went down,”
Wired News, January 25, 2001. http://www.wired.
com/news/technology/0,1282,41412,00.html.

[2] D. Caldwell, A. Gilbert, J. Gottlieb, A. Greenberg,
G. Hjalmtysson, and J. Rexford, “The cutting EDGE
of IP router configuration,” in Proceedings of the ACM
SIGCOMM HotNets Workshop, 2003.

[3] A. Feldmann and J. Rexford, “IP network configura-
tion for intradomain traffic engineering,” IEEFE Net-
work Magazine, pp. 46-57, September/October 2001.

[4] D. A. Maltz, G. Xie, J. Zhan, H. Zhang, G. Hjalmtys-
son, and A. Greenberg, “Routing design in operational
networks: A look from the inside,” in Proceedings of
the ACM SIGCOMM 2004, 2004.

