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Abstract—Step planning is becoming an increasingly important
research topic for humanoid robots. Most cost functions for
step planning in the literature are designed based on terrain
information. The energy cost to perform each step action is
usually ignored. In walking, energy consumption depends on
gait features such as step length and width. In this paper, we
use three simple and intuitive energy cost functions for different
step lengths, widths, and the turning angle. These functions are
inspired by literature on human walking energy analysis, and
the function parameters are tuned to match computed costs
for optimal humanoid walking motions obtained by simulation.
The energy cost and the terrain cost are combined to obtain an
optimal step planning sequence using A* search.

I. INTRODUCTION

Humans have a preferred method of locomotion. Generally,
we walk at a particular speed and with a particular gait pattern
[1]. Studies suggest that minimizing energy consumption is an
important factor in human gait selection [2]–[4]. Energy effi-
ciency has often been considered in walking motion generation
[5]–[7], but this important factor has not been well addressed
in online footstep planning for humanoid robots due to the
computational cost of evaluating an energy cost for whole
body motion.

Most existing methods for path and footstep planning have
mainly focused on environment modeling such as terrain
and obstacles. In path planning, a common approach is to
consider the humanoid robot as a bounding box. The search
algorithm uses the bounding box to generate a collision-free
path [8]–[10]. The problem with this approach is that every
obstacle, even a small one that can easily be stepped over,
must be avoided. To use the ability of stepping over and
on, obstacles are classified based on their geometric features,
such as height, and the robot applies different strategies to
overcome the obstacles depending on their types [11]–[13].
Once a feasible path is found, an appropriate step sequence
along the path is searched for footstep planning. The problem
with this planning strategy is that the path planning stage may
produce an awkward or even unexecutable step sequence.

To alleviate this issue, Chestnutt et. al proposed an algorithm
which directly plans the step sequence [14]. Their method
uses an action model to describe possible foot placements.
Using the action model reduces the dimensionality of the
search space, but also limits the resolution. An adaptive action
model is used to increase this resolution [15]. A guide path

is incorporated into the planning process as a heuristic for the
search [16] [17].

A human normally has a preferred step length and step
width for walking, and this is believed to be related to
minimizing metabolic energy consumption [1], [18], [19]. Kuo
et al. explored a relationship between energy consumption
and certain gait characteristics, such as step length, using a
simple bipedal model, and they predicted a preferred speed-
step relationship for forward walking [3], [4], [20]. Inspired by
their work, we designed a simple cost function for estimating
energy consumption for each step, and applied it to our
humanoid footstep planning. In addition to the cost terms
dependent on the step length and width, we consider the energy
cost for body rotation, or turning the walking direction, which
has not been well addressed in biomechanical literature but
is necessary for the footstep planning. To improve the fidelity
of the cost function, its parameters are tuned to match the
computed costs for humanoid walking motions which were
obtained by using optimization. To our knowledge, this is the
first work to consider energy efficiency in online humanoid
footstep planning.

In Section II and III, we describe the terrain cost and step
energy cost used in our footstep planning based on an A*
search algorithm. We compare our planning method with an
existing method considering only the terrain cost in Section
IV, and conclude this work in Section V.

II. MODELING THE TERRAIN COST

Terrain cost is a common cost included in step planning. To
evaluate a location’s cost, we would like to know information
about the terrain. In this paper, four features are considered in
the cost function: slope, altitude, roughness and bumpiness.
These feature values are calculated based on the terrain
information at the touching down location.

The slope feature indicates the slope angle of the candidate
foot location. Here, the slope angle is calculated by fitting a
plane, p(x, y) = b0+b1∗x+b2∗y, to the candidate foot location
region, ℜ. The feature value is the norm of the gradient.

Cslope =
√
b21 + b22 (1)

The altitude indicates the average height of the obstacle.
Stepping up or down may result in a change of center of mass



(CoM) height, which affects the energy consumption. Here,
we focus on the ground walking. Walking on a higher plane
is not considered.

Caltitude = h(x, y) (x, y) ∈ ℜ (2)

where h(x, y) is the actual terrain height at the x and y
position.

The roughness feature indicates the deviation of the surface
from the fitting plane p(x, y). The roughness is computed
by averaging the difference between actual terrain height and
fitting plane height.

Crough =
1

N
Σ|h(x, y)− p(x, y)| (x, y) ∈ ℜ (3)

Among current humanoid robots, most feet are a flat plate
which are very sensitive to the roughness of the ground. A
small roughness threshold value is given to avoid falling.

The bumpiness feature gives the maximum height change
in the area of foot placement. Similar to roughness, bumps
above the fitted plane are very dangerous which result rocking
of foot. Even a low bump will result in falling during walking.

Cbump = max(|h(x, y)− p(x, y)|) (x, y) ∈ ℜ (4)

Total terrain cost is the weighted sum of these four cost
features.

CTerrain = w1Cslope + w2Caltitude + w3Crough + w4Cbump

(5)
To avoid dangerous terrain, we set a threshold for each feature
cost. The maximum slope tolerance is 30 degree; the maximum
altitude change is 0.2m; the maximum roughness is 0.01m;
the maximum bumpiness is 0.05m. We choose the weights
manually [w1, w2, w3, w4] = [2, 5, 100, 20] to make the cost
terms of these four features at the same scale and balance
the total terrain cost for each foot plane with single step
cost described in section III. However, higher weights for the
terrain cost can be chosen if safety is more important.

Fig. 1 shows an example of randomly generated terrain and
the cost maps of the four features. The map size is 4mx4m.
The foot size is 12x21cm with π

2 orientation, forward in the
y direction (vertical axes). In the terrain design, three types
of obstacles are used: low and wide cylinder (LWC), high
and narrow cylinder (HNC), low and thin bar (LTB). The size
and shape of the obstacles are chosen to ensure that the robot
can step on the LWC and step over the LTB. Due to height
limitations, the robot cannot step over the HNC. This property
is not shown in the cost function. To enable this property, a
threshold is specified to the height of the obstacle along the
stride line of walking. The height limit is set to be 0.2m.

III. MODELING THE STEP ENERGY COST

In walking, humans have a preferred step length and step
width. Much research has been conducted to analyze the
reason for this behavior, with particular emphasis on energy.
Humans is believed to walk in an energy efficient manner [2]–
[4]. Therefore, human-like step planning requires the consid-
eration of energy consumption. A direct method of calculating
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Fig. 1. Top left: terrain map with 4mx4m size; Top right: Cslope; Middle
left: Caltitude; Middle right: Crough; Bottom left: Cbump; Bottom right:
CTerrain.

the energy consumption is to build a dynamic model and then
compute energy consumption. Due to the great complexity of
humanoid robots, estimating the energy cost using a detailed
model is difficult. In this paper, a simple dynamic model
is used to estimate energy consumption for steps of varying
lengths and widths.

A. Energy Cost with Step Length

For a particular walking speed, humans tend to choose a
step length and step frequency that minimizes their energy
consumption [4]. Kuo [4] used a simple passive dynamic
walking model to evaluate the relationship between the energy
cost of muscle activity and step length. The cost of transport
forward is divided into two parts: cost of pushing off with the
support foot to move the body forward and the cost of moving
the swing foot. The first component is hypothesized to be
proportional to the third power of step length [20]. On the other
hand, the swing leg contributes substantial cost as a tradeoff
between high frequency walking and long step walking. In
Kuo’s hypotheses [4], the cost of the swing foot increases
sharply with the increase of swing frequency. Assuming the
swing leg moves at a constant speed, the cost of swing foot
movement is inversely proportional to the step length. The
energy cost with step length can be:

CstepL ∼ Al3 +Bl−1 + C (6)

where A and B are scaling factors, C is a constant cost, l
is the step length, and EstepL is normalized for body weight



and distance traveled to yield a dimensionless energy cost of
transport.

B. Energy Cost with Step Width

Humans also appear to prefer a particular step width. This
preferred step width may be a result of minimized energy cost.
Based on the passive dynamic walking model, the energy loss
incurred in transition from one single support to the other is
proportional to the square of the step width [3]. Alternatively,
a narrow step width is also costly due to increased risk
of collision with the other leg. Studies suggest that energy
consumption of side-to-side foot motion will increase linearly
as step width decreases below the preferred step width [3].
The energy cost with the step width can be written as:

CstepW ∼ Dw2 + Collision(w) (7)

Collision(w) ∼

{
0 w>SW ;

E(SW − w) else
(8)

where D and E are scaling factors, w is the step width, SW is
the preferred step width, and EstepW is normalized for body
weight and travel distance.

C. Energy Cost with Body Rotation

Besides step length and step width, turning also costs energy
as body rotates to a new direction. Most work on human
walking analysis is based on forward walking only. Here, we
create a function to describe the cost of walking for both
straight-line travel and turning. We hypothesize that the energy
consumption of rotation is proportional to the square of the
body rotation angle.

Crotation ∼ Fθ2/l (9)

where F is a scaling factor and θ is a rotation angle. The
body rotation angle is defined as orientation change between
target foot and supporting foot. Erotation is normalized for
body weight and travel distance.

D. Step Energy Cost Function

The total energy cost function is the combination of three
factors: step length, step width and body rotation.

CStep = CstepL + CstepW + Crotation (10)

We set the parameters in Equations (7)-(9) as A = 22.0, B =
4.13, C = 10.0, D = 0.2, E = 0.23, F = 0.4. based on
simulated walking cost data described in Section III (E).

Generally, step length is equal to the distance between
corresponding successive points of heel contact of the opposite
feet. According to the Equation (6), when the candidate foot
location is close to the supporting foot, the value of CstepL can
be very large. To avoid a rapid increase in the cost function,
we use half of the stride length (distance between successive
points of heel contact of the same foot) as an approximate
value of step length. Considering that initial condition will

Fig. 2. Energy cost map per travel distance; lp = 0.5; SW = 0.178;
searching region in y direction [0.5, 1.2]m, x direction [-0.4,0.4]m; the optimal
step location is at [0.09, 1]m; the colormap is Jet in Matlab.

affect the energy consumption, the previous step length is also
included in the calculation of current step length.

l =
sl
2
(
lr
lp
)0.5 (11)

where sl is the stride length, lp is the distance between the
support foot and previous foot location, and lr is the optimal
step length. The power of 0.5 adds a damping factor if the
previous step length deviated from the optimal step length. It
helps the step length return back to the preferred step length
gradually. For the first step, we assume that lp = lr.

Fig. 2 shows an example of cost map showing energy cost
per distance travel for different step location. The left foot
is in stance at [0.5 -0.09]m. The previous foot location is
[0,0.09]m. In this example, the search region is the area in
front of the supporting foot [0.5m 1.2]m in the y direction
and [-0.4m 0.4m] in the x direction. The resulting optimal
foot location is [0.09 1]m. The map indicates that moving in
the forward direction is more energy efficient than moving
sideways. Turning, especially sharp turns, consumes more
energy than forward motion. The expected energy cost of
a sharp turn is approximately twice the value of forward
walking. Therefore, given a goal location where turning is
needed, the planner prefers to turn gradually to reach the goal
instead of turning sharply, which matches our intuition about
human-like walking

E. Comparing Our Cost Function with Simulated Humanoid
Walking Cost

In order to improve the fidelity of our energy cost function
for humanoid footstep planning, we tune the parameters by
comparing with estimated costs for optimized humanoid walk-
ing motions. More specifically, we compare the step cost value
to the commonly used torque squared optimization criteria:
sum of squared joint torques

(∫
τT τdt

)
. The torque squared

criteria does not optimize energy. We are testing whether the
results of our energy optimization are similar to a widely used
optimization criteria in animation and robotics. The walking
motions were obtained by using trajectory optimization.



Fig. 3. Humanoid robot model in the simulation.

The robot model (Figure 3) has 16 revolute joints – each
leg has 6 joints (3 at the hip, 1 at the knee, and 2 at the ankle),
and the waist and neck have 3 joints and 1 joint respectively.
The arms are not included in the model. The total mass is
about 67 kg and the height is about 170 cm.

In our optimization setting, the trajectory of each joint is
represented with a series of many quintic polynomials whose
parameters are the optimization variables. Given a sequence
of foot step positions, we find an optimal walking trajectory
that minimizes a cost function while satisfying the foot step
constraints and other constraints such as physical limits as
mentioned below.

The objective function we used for the trajectory optimiza-
tion penalizes the joint torques and the impulse to the swing
foot at the moment of collision with the ground. We also
penalize the lateral deviation of the swing foot trajectory from
the straight line connecting the previous and target swing
positions to avoid the self collision. The joint angle and torque
limits, the height clearance for the swing foot, and the friction
cone constraints for the contact force at the stance foot and
the impulse at the swing foot are considered as the inequality
constraints of the optimization problem. The robot feet are
constrained to be parallel to the flat ground during walking.
The double support phase was ignored in our walking model
for problem simplification; only single support phase – one
foot is the stance foot and the other is the swing foot –
was considered. We used SNOPT, an off-the-shelf sequential
quadratic programming solver [21], in our optimization.

In this comparison, two types of walking trajectories are
tested: 1) forward walking with various step lengths from 0.2m
to 0.9m (Fig. 4 top left); 2) turning motion from 1 to 90
degrees to the left (Fig. 4 bottom left). The parameters in
Equation (7)-(9) are tuned to match the cost from optimized
humanoid walking. Fig. 4 shows the computed costs for these
two types of walking trajectories. The comparison provides us
a good reference to tune the parameters of the cost function.
Also, our cost function is validated by the optimal humanoid
walking cost where we see similar trends. The cost value of
forward walking with optimal step length 0.5m is chosen to
be 0.5 to match the distance travel.

Analysis of step length and step width are often based on the
metabolic cost of human walking [3] [4]. Due to the difference
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Fig. 4. Comparison between step costs by our simplified cost function and
step costs by optimized humanoid walking motion. The blue line is the cost
from Equation (10) and green line is the estimated cost from optimized human
motion. Due to different scale size, the values are different between two cost
results. However, they show a similar growth trend.

between humans and humanoid robots, the results of such
analysis may not be directly applicable to humanoid robots..
In our analysis, the cost function is compared with the cost of
an optimized humanoid walking motion. This makes the cost
function more applicable to the humanoid robot.

IV. SIMULATION RESULTS

A. A* Planning

In step planning, A* search is often used to find the optimal
step sequence from a starting point to a goal point. A* search
includes two main parts: 1) expand the search by generating
children nodes from the parent node 2) compute the cost of
each child’s node.

For the first part, we generate a child node from an action
pool. Fig. 5 shows the full set of our actions which enable the
robot to walk forward, walk sideways, turn left and turn right.

Large action sets in the pool will dramatically increase
the number of nodes in the A* search, which results in a
long computation time. Small action sets limit the options
available to the A* search, which generally results in finding
higher cost trajectories.. To address this problem, we adopt an
adaptive step location for a given action. As shown in Fig.
6 (a), if there is an obstacle under the given step location,
the adaptive step will check the surrounding area to find
an obstacle-free stepping region. The searching areas include
[−0.05, 0, 0.05]cm in x and y directions and [− 1

18π, 0,
1
18π] in

orientation. The overall coverage is given in Fig. 6 (b).
We have analyzed the second part in section II and III. The

estimated cost of a foot location is given by:

CE = CStep + CTerrain +Heuristic+ Cprevious (12)

where CE is the estimated cost of this foot location; CTerrain

is given by Equation (5); CStep is given by Equation (10);
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Fig. 5. Footstep action set with forward (a), sideways and backward (b),
turn right (c) and turn left (d). The actions displayed are only those for the
right foot (relative to the left foot shown in red).
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Fig. 6. Foot action with adaptive steps (a), adaptive steps with
[−0.05, 0, 0.05]cm in x and y directions and [− 1

18
π, 0, 1

18
π] in orientation

(b), overall coverage for 16 foot actions with adaptation.

Cprevious is the accumulated cost of previous steps. Heuristic
cost is the estimated cost to the goal which guides the
searching direction. Here, the Heuristic cost is calculated by
the Euclidean distance from the foot location to the goal
location.

B. Comparing Path Planning Results

In this sectopm, we test four planning methods with 1) fixed
action set and fixed step cost (FSFC) 2) adaptable action set
and fixed step cost (ASFC) 3) fixed action set and energy
cost (FSEC) 4) adaptable action set and energy cost (ASEC).
For the fixed step cost used in FSFC and ASFC, we used
the constant cost of 0.5 for each step in planning. We used
Equation (10) to evaluate the energy cost for each step action
in planning with FSEC and ASEC.

The test environment is 10mx10m in size where the three
types of obstacles (LWC, HNC, LTB) described in section
II are randomly placed inside. Fig. 7 shows the results of

our first experiment. Green and pink color foot step sequence
is computed by FSFC. The total step cost is 16.9 based on
Equation (10) and total terrain cost is 0.10 based on Equation
(5). Gray and white color foot step sequence is computed by
FSEC with total step cost 12.3 and total terrain cost 0.13. Red
and yellow color foot step sequence is computed by ASEC
with total step cost 12.1 and total terrain cost 0.23. In this
experiment, we compared how well step planners with and
without an energy-based optimization criterion perform using
the energy-based criterion. From the result, both ASEC and
FSEC have better performance than the FSFC in step cost.

Fig. 7. Path planning in a large environment with size 10mx10m; green
and pink color step sequences is computed by FSFC with total step cost 16.9
and terrain cost 0,10; gray and white color step sequences is computed by
FSEC with total step cost 12.3 and terrain cost 0,13; red and yellow color
step sequences is computed by ASEC with total step cost 12.1 and terrain
cost 0,23; the color map is an inverted gray scale color.

In our next experiments, we run the planner 40 times in
different environments which are randomly generated. In each
round, all four methods are tested. Fig. 8 shows the average
costs for these 4 methods in 40 rounds. To give a clear view,
the step cost and the terrain cost are separated. Average costs
for the methods which consider the energy cost (FSEC and
ASEC) are significantly smaller than the methods which use
fix step cost (FSFC and ASFC). This is unsurprising because
the step cost is included in the A* search. The step cost
function can improve the energy cost of step planning.

The data also shows that the adaptable action method helps
reduce the total terrain cost. The terrain costs of footstep
sequences generated by the ASEC and ASFC methods are
significantly smaller than those generated by the FSEC and
FSFC methods. The adaptable action allows the planner to
evaluate a larger number of potential footstep locations which
reduces the terrain cost. Also, the terrain costs of FSEC and
ASEC are higher than the ones of FSFC and ASFC. This is
because, in the case of fixed step cost (FSFC and ASFC), the
planner tries to find a path with low terrain cost. However,



when the step energy cost is considered (FSEC and ASEC),
the planner tries to find a path which minimizes both terrain
cost and step cost. Therefore, the terrain costs of FSEC and
ASEC are higher than the ones of FSFC and ASFC. However,
their total costs are lower.

Fig. 8. Bar graph of average cost comparison between four types of methods.

V. CONCLUSION

In this paper, we designed a simple energy cost function
for estimating energy consumption effectively, and applied it to
humanoid foot step planning. A new cost term which addresses
turning is added to the total cost function. To improve the
fidelity of the cost function, its parameters are tuned to match
the simulated humanoid walking cost which is obtained by
trajectory optimization. The simulation results show that the
proposed step planner has better energy efficiency compared
to a fixed step cost.

Generally, avoiding failure (falling in the case of humanoid
walking) is the first priority in motion planning. When the
walking condition is bad, attention is given to prevent falling.
However, in steady state human walking or avoiding obstacles,
which can be handled with confidence, the walking patterns
are more likely to be determined by energetics. One limita-
tion of the current cost function is that the velocity is not
considered. Humanoids may have different walking speed in
different situations. Another future research area would involve
comparison of the footstep choices to human footstep choices
in actual experiments.
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