Elaborating intersection and union types

Joshua Dunfield

MPI-SWS

Kaiserslautern and Saarbrücken, Germany

10 September 2012
ICFP 2012, Copenhagen
Outline

- **Motivation**
 - Overview
 - Source semantics
 - Target semantics
 - Elaboration
 - Applications
 - Related work
 - Summary & future work
Motivation

- Type systems are great, but...
 - designing them is hard
 - implementing them is hard
- Each new type system feature is a burden
- This paper is about encoding type system features using intersection and union types, then elaborating them away
(and the real motivation)

- Intersection types are fun!
Approach

- Encode type system features as intersections and unions
 - Operator overloading:
 \[+ : (\text{int} \times \text{int} \rightarrow \text{int}) \wedge (\text{real} \times \text{real} \rightarrow \text{real}) \wedge \ldots \]

- Need unrestricted intersection and union types and a **merge construct**

- **Elaborate** intersections and unions into simple products and sums

- **This talk** is about intersection types; for union types, see the paper
✓ Motivation

☞ Overview

• Source semantics
• Target semantics
• Elaboration
• Applications
• Related work
• Summary & future work
What is an intersection type?

- Something **conjunctive**, like set intersection

 \[\nu : A \land B \] means \(\nu \) has type \(A \) **and** type \(B \)

 with these typing rules:

 \[
 \begin{align*}
 &e : A_1 && e : A_2 \\
 \hline
 &e : A_1 \land A_2 \\
 \end{align*}
 \]

 \(\land I \)

 \[
 \begin{align*}
 &e : A_1 \land A_2 \\
 \hline
 &e : A_k \\
 \end{align*}
 \]

 \(\land E_k \)

- Can form \(A \land B \) from arbitrary \(A \) and \(B \)

 (unlike previous work on type refinements!)
What is an intersection type?

• Something conjunctive, like set intersection

\[\nu : A \land B \] means \(\nu \) has type \(A \) and type \(B \)

with these typing rules:

\[
\begin{align*}
& \frac{e : A_1 \quad e : A_2}{e : A_1 \land A_2} \quad \land I \\
& \frac{e : A_1 \land A_2}{e : A_k} \quad \land E_k
\end{align*}
\]

• Can form \(A \land B \) from arbitrary \(A \) and \(B \) (unlike previous work on type refinements!)

• Is it conjunction?
 • Product types correspond to conjunction
Is intersection a product type?

Product \ast

intro has **multiple witnesses**

$\frac{e_1 : A_1 \quad e_2 : A_2}{(e_1, e_2) : A_1 \ast A_2}$ $\ast I$

elim has **explicit eliminations**

$\frac{e : A_1 \ast A_2}{\text{proj}_k e : A_k}$ $\ast E_k$

Intersection \wedge

has **one witness**

$\frac{e : A_1 \quad e : A_2}{e : A_1 \wedge A_2}$ $\wedge I$

is implicitly eliminated

$\frac{e : A_1 \wedge A_2}{e : A_k}$ $\wedge E_k$
It’s not a product type

- Not all intersections [of inhabited types] are inhabited:

\[\text{int} \land (\text{int} \rightarrow \text{int}) \]

uninhabited because no \(\nu \) is both an integer and a function

- All products inhabited:

\[(0, \lambda x. x + 3) : \text{int} \ast (\text{int} \rightarrow \text{int}) \]

- \(\ldots \)
It’s not a product type

- Not all intersections [of inhabited types] are inhabited:
 \[
 \text{int} \land (\text{int} \to \text{int})
 \]
 uninhabited because no \(v \) is both an integer and a function

- All products inhabited:
 \[
 (0, \lambda x. x + 3) : \text{int} \ast (\text{int} \to \text{int})
 \]

- But we can make all intersections inhabited by adding a merge construct
Merge construct

\[
\Gamma \vdash e_k : A \\
\Gamma \vdash e_1, e_2 : A \\
\therefore \quad (\exists k \in \{1, 2\})
\]
Merge construct

\[\Gamma \vdash e_k : A \]
\[\Gamma \vdash e_1, e_2 : A \quad (\exists k \in \{1, 2\}) \]

Example:

\[\cdot \vdash 0 : \text{int} \quad \cdot \vdash \lambda x. x + 3 : \text{int} \rightarrow \text{int} \]
\[\cdot \vdash 0, (\lambda x. x + 3) : \text{int} \quad \cdot \vdash 0, (\lambda x. x + 3) : \text{int} \rightarrow \text{int} \]
\[\cdot \vdash 0, (\lambda x. x + 3) : \text{int} \land (\text{int} \rightarrow \text{int}) \]
\[\land I \]
Merge construct

\[\Gamma \vdash e_k : A \]
\[\Gamma \vdash e_1,, e_2 : A \quad (\exists k \in \{1, 2\}) \]

Example:

\[\cdot \vdash 0 : \text{int} \]
\[\cdot \vdash 0,, (\lambda x. x+3) : \text{int} \]
\[\cdot \vdash 0,, (\lambda x. x+3) : \text{int} \rightarrow \text{int} \]
\[\cdot \vdash (\lambda x. x+3) : \text{int} \rightarrow \text{int} \]
\[\vdash 0,, (\lambda x. x+3) : \text{int} \land \text{(int} \rightarrow \text{int}) \]

- Order irrelevant: \((\lambda x. x+3),, 0\) also OK
- **Not** an introduction form for \(\land\)
- Generalization of the merge construct in Forsythe (Reynolds 1988, 1996)
Merge construct

Product \ast

- intro has **multiple witnesses**
- $e_1 : A_1$ $e_2 : A_2$
- $(e_1, e_2) : A_1 \ast A_2$

Intersection \land

- has one witness, with **two parts**
- $e_1, e_2 : A_1$
- $e_1, e_2 : A_2$
- $(e_1, e_2) : A_1 \land A_2$
Elaborating ∧, ∨

- Elaborate ∧ to product and ∨ to disjoint sum

\[
\text{int} \land (\text{int} \rightarrow \text{int}) \quad \longrightarrow \quad \text{int} \star (\text{int} \rightarrow \text{int})
\]

 type in source program elaborated type in target program

- Old idea (Pierce, or earlier?), but never fully worked out

- Implicit ∧-elimination becomes explicit ∗-elimination

\[
e : A_1 \land A_2 \quad \leftrightarrow \quad M \\
\quad \quad \text{∧E}_1
\]
\[
e : A_1 \quad \leftrightarrow \quad \text{proj}_1 M
\]
\[
M : A_1 \star A_2 \quad \rightarrow \quad \text{∗E}_1
\]
\[
(\text{proj}_1 M) : A_1
\]
Overview

Program

Source language
\rightarrow, \land, \lor

Result

$\nu : A \xleftarrow{\text{elaborate}} W : T$

$nondeterministic evaluation (cbv + merge)$

Target language
$\rightarrow, *, +$

$\epsilon : A \xrightarrow{\text{elaborate}} M : T$

$\text{standard evaluation (cbv)}$
✓ Motivation
✓ Overview
☞ Source semantics
 • Target semantics
 • Elaboration
 • Applications
 • Related work
 • Summary & future work
Source: syntax

Source types \(A, B, C \ ::= \top \mid A \to B \mid A \land B \mid A \lor B \)

Typing contexts \(\Gamma ::= \cdot \mid \Gamma, x : A \)

Source expressions \(e ::= x \mid () \mid \lambda x. e \mid e_1 e_2 \mid \text{fix } x. e \)
\[\mid e_1,\ldots, e_2 \]

Source values \(v ::= x \mid () \mid \lambda x. e \mid v_1,\ldots, v_2 \)
Source: dynamic semantics

\[
\begin{align*}
& e \leadsto e' \quad \text{Source expression } e \text{ steps to } e' \\
& e_1 \leadsto e'_1, \quad e_2 \leadsto e'_2, \quad \lambda x. e \leadsto [v/x]e \\
& \overset{\text{fix } x.}{\text{Unmerge:}} e_1, e_2 \leadsto e_1, e_1, e_2 \leadsto e_2 \\
& \overset{\text{Merge:}}{\text{Split:}} e \leadsto e, e
\end{align*}
\]
Warning: Do not run

\[
\begin{align*}
\text{e}_1,, \text{e}_2 &\rightsquigarrow \text{e}_1 & \text{e}_1,, \text{e}_2 &\rightsquigarrow \text{e}_2 \\
\text{e}_1 &\rightsquigarrow \text{e'}_1 & \text{e}_2 &\rightsquigarrow \text{e'}_2 \\
\text{e}_1,, \text{e}_2 &\rightsquigarrow \text{e'}_1,, \text{e}_2 & \text{e}_1,, \text{e}_2 &\rightsquigarrow \text{e}_1,, \text{e'}_2
\end{align*}
\]

• Therefore:

\[
(0,, (\lambda x. x + 3)) \; 5 \rightsquigarrow 0 \; 5
\]
Warning: Do not run

\[
\begin{align*}
\quad & e_1,, e_2 \leadsto e_1 & \quad & e_1,, e_2 \leadsto e_2 \\
\quad & e_1 \leadsto e'_1 & \quad & e_2 \leadsto e'_2 \\
\hline
\quad & e_1,, e_2 \leadsto e'_1,, e_2 & \quad & e_1,, e_2 \leadsto e_1,, e'_2 \\
\end{align*}
\]

- Therefore:

\[
(0,, (\lambda x. x + 3)) 5 \leadsto 0 5 \not\leadsto \quad \text{ill-typed}
\]

- Every \(e : A \) is a value, or there exists some \(e' \) such that \(e \leadsto e' \) and \(e' : A \).

\[
(0,, (\lambda x. x + 3)) 5 \leadsto (\lambda x. x + 3) 5 \leadsto 5 + 3
\]
✓ Motivation
✓ Overview
✓ Source semantics
陴 Target semantics
 • Elaboration
 • Applications
 • Related work
 • Summary & future work
Target language: cbv + products + sums

Target types
\[T ::= \text{unit} \mid T \to T \mid T \times T \mid T + T \]

Typing contexts
\[G ::= \cdot \mid G, x : T \]

Target terms \(M, N \) ::= \(x \mid () \mid \lambda x.\ M \mid M \, N \mid \text{fix} \, x.\ M \mid (M_1, M_2) \mid \text{proj}_k \, M \mid \text{inj}_k \, M \mid \text{case} \, M \, \text{of} \, \text{inj}_1 \, x_1 \Rightarrow N_1 \mid \text{inj}_2 \, x_2 \Rightarrow N_2 \]

Target values \(W \) ::= \(x \mid () \mid \lambda x.\ M \mid (W_1, W_2) \mid \text{inj}_k \, W \)

\[
\begin{align*}
G \vdash M : (T_1 \times T_2) & \quad \quad \quad \quad \quad \quad M \mapsto M' \\
G \vdash (\text{proj}_k \, M) : T_k & \quad \quad \quad \quad \quad \quad \text{proj}_k \, M' \mapsto \text{proj}_k \, M' \\
\text{proj}_k \, (W_1, W_2) & \mapsto W_k
\end{align*}
\]
✓ Motivation
✓ Overview
✓ Source semantics
✓ Target semantics

Elaboration
 • Applications
 • Related work
 • Summary & future work
Elaboration

\[\Gamma \vdash e : A \rightsquigarrow M \] Source expr. e elaborates to target term M

\[
\frac{\Gamma, x : A \vdash e : B \rightsquigarrow M}{\Gamma \vdash \lambda x. e : A \rightarrow B \rightsquigarrow \lambda x. M} \quad \rightarrow I
\]

\[
\frac{\Gamma \vdash e_1 : A \rightarrow B \rightsquigarrow M_1}{\Gamma \vdash e_2 : A \rightsquigarrow M_2} \quad \rightarrow E
\]

\[
\frac{\Gamma \vdash e_k : A \rightsquigarrow M}{\Gamma \vdash e_1,, e_2 : A \rightsquigarrow M} \quad \text{merge}_k
\]

\[
\frac{\Gamma \vdash e : A_1 \rightsquigarrow M_1}{\Gamma \vdash e : A_2 \rightsquigarrow M_2} \quad \wedge I
\]

\[
\frac{\Gamma \vdash e : A_1 \wedge A_2 \rightsquigarrow (M_1, M_2)}{\Gamma \vdash e : A_k \rightsquigarrow \text{proj}_k M} \quad \wedge E_k
\]

- If \(e : A \rightsquigarrow M \) then \(M : |A| \), where \(|-|\) replaces \(\wedge \) with \(*\)
Incoherence

- Depending on which part the typechecker chooses,

 $3, 4 : \text{int}$

 can elaborate to either 3 or 4

- Sound—3 and 4 both have type int

- But incoherent:
 evaluation depends on the whim of the typechecker!
Consistency

If \(\cdot \vdash e : A \rightarrow M \) and \(M \leftrightarrow M' \)

then \(\exists e' \text{ such that } e \rightarrow^* e' \) and \(\cdot \vdash e' : A \rightarrow M' \).
Consistency

Program $e : A \xrightarrow{\text{elaborate}} M : T$

zero or more

$e' : A$

If $\vdash e : A \rightarrow M$ and $M \rightarrow M'$

then $\exists e'$ such that $e \rightsquigarrow^* e'$ and $\vdash e' : A \rightarrow M'$.

Note that $e \rightsquigarrow^* e'$ not always one step:

* **zero** steps: $\text{proj}_1 (W_1, W_2) \rightarrow W_1$

* ≥ 2 steps: $(v_1, \lambda x. x) \text{v} \leftrightarrow (\lambda x. x) W \rightarrow W$
 but $(v_1, \lambda x. x) \text{v} \rightsquigarrow (\lambda x. x) \text{v} \rightsquigarrow \text{v}$
Consistency, multi-step

Source language: \rightarrow, \land, \lor

Program: $e : A$ $\xleftarrow{\text{elaborate}} M : T$

Target language: $\rightarrow, *, +$

Result: $\nu : A$ $\xleftarrow{\text{elaborate}} W : T$

Consistency (multi-step)

If $\cdot \vdash e : A \leftrightarrow M$ and $M \rightarrow^* W$

then there exists ν such that $e \sim^* \nu$ and $\cdot \vdash \nu : A \leftrightarrow W$.
✓ Motivation
✓ Overview
✓ Source semantics
✓ Target semantics
✓ Elaboration
☞ Applications
 • Related work
 • Summary & future work
StardustML*: indexed types, refinement types, first-class polymorphism, ...

* StardustML: indexed types, refinement types, first-class polymorphism, ...

\[e : A \quad \rightarrow \quad M : T \quad \rightarrow \quad binary \]

\[v : A \quad \rightarrow \quad W : T \quad \rightarrow \quad SML/NJ \]

elaborate

nondeterministic evaluation (cbv + merge)

standard evaluation (cbv)

machine execution

\[\rightarrow, \wedge, \vee \]
Some applications

• Overloading:

\[+ : (\text{int} \times \text{int} \rightarrow \text{int}) \land (\text{real} \times \text{real} \rightarrow \text{real}) \]
\[+ = \text{Int.}+.\text{Real.}+ \]

• Records:
 Multi-field records as the intersection/merge of single-field records (Reynolds)

• Heterogeneous data: convenience with safety
Union types for heterogeneous data

```ml
type dyn = int ∨ real ∨ string

val toString : dyn → string
fun toString x =
  (Int.toString ,,)
  (fn s ⇒ s : string) ,, Real.toString) x

val hetListToString : dyn list → string
fun hetListToString xs = case xs of
  nil ⇒ "nil"
| h::t ⇒ (toString h) ^ "::" ^ (hetListToString t)

hetListToString [1, 2, "what", 3.14159, 4, "why"]
  = "1::2::what::3.14159::4::why::nil"
```
✓ Motivation
✓ Overview
✓ Source semantics
✓ Target semantics
✓ Elaboration
✓ Applications
❖ Related work
 • Summary & future work
Related work

- Early work on \land and \lor: see paper
- Pierce (1991): idea of compiling \land to \ast
- Forsythe (Reynolds 1988, ’96): first practical language with \land; used a limited, coherent merge
- λ&-calculus (Castagna et al. 1995): λ-bodies are merges; type-based dynamic semantics, without elaboration
- Flow types (Turbak et al.): internal virtual tuples and virtual sums
- Type refinements (Pfenning, Freeman, Davies, Dunfield, ...)
Motivation
Overview
Source semantics
Target semantics
Elaboration
Applications
Related work
Summary & future work
Summary

- Various language features can be encoded with \land and \lor ... which can be elaborated away
- Elaboration produces terms consistent with the (impractical) dynamic semantics of the source language
- The current system lacks coherence

+ In the paper:
 - union types
 - subtyping
 - bidirectional typing (inference is undecidable)
 - implementation
Future work

- Current approach is incoherent:

 \[3, 4 : \text{int}\]

 could elaborate to either 3 or 4

- Runtime behaviour still sound, but unpredictable

- Solution (?): a merge that prefers the second part, allowing e.g. functional record update:

 \[r, \{\text{fld}=e\}\]

- Need a notion of type difference to “subtract” the behaviour to be overridden
Thank you

- And thanks to
 - the ICFP reviewers
 - Adam Megacz

- Further reading:
 - http://www.cs.cmu.edu/~joshuad/intcomp/ (Twelf proofs)