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Abstract. In object tracking, complex background frequently forms local 
maxima that tend to distract tracking algorithms from the real target. In order to 
reduce such risks, we utilize an adaptive Kalman filter to predict the initial 
searching point in the space of coordinate transform parameters so that both 
tracking reliability and computational simplicity is significantly improved. Our 
method tracks the changing rate of the transform parameters and makes 
prediction on future values of the transform parameters to determine the initial 
searching point. More importantly, noises in the Kalman filter are effectively 
estimated in our approach without any artificial assumption, which makes our 
method able to adapt to various target motions and searching step sizes without 
any manual intervention. Simulation results demonstrate the effectiveness of our 
algorithm.   

Keywords: Object tracking, coordinate transform, initial searching point, 
adaptive Kalman filter. 

1   Introduction 

Object tracking has been widely applied to video retrieval, robotics control, traffic 
surveillance and homing technologies. A lot of object tracking algorithms have been 
reported in literatures, and among them the template matching algorithms has drawn 
much attention [1]-[6]. In such algorithms, target is modeled by a template, and is 
tracked in a video sequence by matching candidate image regions with the template 
through coordinate transforms. The set of transform parameters that yield the highest 
similarity between the template and the mapped image region of the current frame 
represents the geometric information of the target.  

The performance of object tracking heavily depends on whether the search for the 
optimal transform parameters can be executed effectively. Many fast searching 
algorithms have been proposed in an effort to increase the accuracy of searching results 
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while reducing computational complexity. Typical algorithms include Three Step 
Search (TSS) [7], 2D-Log Search (2DLS) [8], Block-based Gradient Descent Search 
(BBGDS) [9], and Lucas-Kanade algorithm [1].  

For all the algorithms mentioned above, the distraction of local minima is always a 
serious problem frequently leading to the failure to find the real coordinate transform 
parameters. Ideally, the image region where real target occupies in the current frame 
should render the largest similarity measure and therefore unambiguously make itself 
stand out against the other parts of the frame. When background is cluttered, however, 
some nearby objects also generate comparable similarity measure and hence confuse 
tracking algorithms. When searching for optimal coordinate transform parameters, 
tracking algorithms frequently find themselves trapped into local maxima produced by 
background objects and other interferences.  

Such a situation can be improved by predicting the initial searching point in the 
space of transform parameters for the next frame and reducing searching range to 
ensure unimodalilty of the similarity measure. Since most local maxima in the 
transform parameter space reside some distance from the global maximum where the 
target locates, the risk of being trapped into local maxima can be substantially reduced 
if the initial searching point is in the close vicinity of the global maximum. This 
requires a good prediction of the geometric status of the target in each frame.  

In the realm of object tracking, Kalman filters have been used in literatures [6], [11], 
[12], but few of them serve the purpose of predicting the initial searching point and 
enhancing tracking performance for the next frame. Besides, the model noises are fixed 
and determined empirically. In this paper, we propose an approach which employs 
Kalman filter to track the changing rate of the transform parameters instead of directly 
filtering their values. Then we select the predicted parameters as the initial searching 
point for the next frame. More importantly, after analyzing the cause of the model 
noises in the Kalman filter, we propose an effective method to estimate the power of 
those noises. As a result, the Kalman filter in our approach can automatically adapt to 
various target motions and searching step sizes. Experimental results indicate that the 
proposed method can achieve extremely high accuracy of predicting parameters and 
hence a significant decrease in the risk of being distracted by background interferences, 
as well as a considerable drop in computational burden.  

The remainder of this paper is organized as follows. Section II focuses on the 
adaptive Kalman prediction of the initial searching point in the transform parameter 
space after a brief review of object tracking algorithms based on template matching. 
Experimental results are included in Section III. The paper is concluded in Section IV. 

2   Adaptive Prediction of the Initial Searching Point 

2.1   Object Tracking Based on Template Matching 

The object (or target) to be tracked is characterized by an image called template which 
is generally extracted from the first frame of a video sequence. In subsequent frames of 
the video sequence, the template is mapped to the coordinate system of the frames by 
coordinate transforms. A searching algorithm tries various combinations of transform 
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parameters to find a set of transform parameters that maximize the similarity between 
the template and the mapped region of the current frame: 

( )[ ] ( ){ }xaxa
a

TIm ,;simmaxarg ϕ=  
(1) 

where T(x) is the grey scale value of a template pixel located at x in the template 
coordinate system, I(y) is the grey scale value of a frame pixel located at y in the frame 
coordinate system, φ(x;a) is the coordinate transform with parameter vector a, sim{I,T} 
is a function that measures the degree of similarity between images I and T. Typical 
examples of sim{I,T} include the normalized linear correlation or the inverse of SSD 
(sum of squared difference) between I and T [13]. am is the transform parameter vector 
that the searching algorithm assumes to be the one corresponding to correct geometric 
information of the target. 

The type of the coordinate transform is determined by its parameter vector a. For the 
coordinate transform that consists of translation, scaling and rotation, a has four 
components and φ(x;a) can be written as 
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Generally speaking, φ(x;a) can have arbitrarily large number of parameters and hence 
describe extremely complex object motions. Yet the model described by (2) is 
sufficient for most real-world tracking applications. 

2.2   Predicting the Initial Searching Point 

In order to predict the initial searching point in the transform parameter space, possible 
value of each transform parameter in the next frame has to be predicted. Since the frame 
rate is relatively high, we can reasonably assume the changing rate of each parameter 
does not alter abruptly over adjacent frame intervals. What brings uncertainty to the 
changing rate is the influence of arbitrary motion of the target. Such an influence brings 
about fluctuation of the changing rate of the transform parameters, and thus can be 
regarded as noise. We employ an adaptive Kalman filter to track the changing rate of 
the parameters. Such a method is especially instrumental in predicting, not just 
smoothing, the geometric status of the target. Since different transform parameters 
describe independent aspects of target motion, they can be predicted separately. The 
discussion below therefore focuses on one parameter alone and it can be applied to the 
other parameters trivially. 

The state transition equation and the measurement equation for the changing rate of 
a coordinate transform parameter a are 

( ) ( ) ( )11 −+−= nunvnv  , (3) 

( ) ( ) ( )nwnvnvm +=  , (4) 

where v(n) is the changing rate of the parameter defined as a(n)-a(n-1), vm(n) is the 
measured changing rate of the parameter, which is actually the increment of the result 
of parameter search in (1), u(n) is the cause of the fluctuation of v(n) and is white with 
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the power of σu
2(n), and w(n) is the measurement noise resulting from the limit in the 

precision of the searching step size for the parameter a. It is also white, with the power 
of σw

2(n). 
Suppose ( )nvPˆ  is the prediction of v after the measurement up to frame n-1 is 

available, and ( )nvEˆ  is the estimate of v after the measurement up to frame n is acquired. 

If ( )neP
 denotes the prediction error of v and ( )neE

 represents the estimation error of v, 

the following equations hold: 

( ) ( ) ( )11ˆ1 −+−=− nenvnv EE
 , (5) 

( ) ( ) )(ˆ nenvnv PP +=  . (6) 

Since the state transition coefficient in (3) is one, the estimate of v at frame n-1 serves as 
the prediction of v at frame n: 

( ) ( )1ˆˆ −= nvnv EP
 . (7) 

From (3), and (5) to (7), the relationship between the prediction and the estimation 
errors can be derived: 

( ) ( ) ( )11 −+−= nunene EP
 . (8) 

As eE(n-1) is uncorrelated with u(n-1), the additive relationship remains for the power 
of the signals in (8): 

( ) ( ) ( )11 222 −+−= nnn uEP σσσ  (9) 

Where σP
2 and σE

2 are the power of prediction error and estimation error, respectively. 
According to the theory of Kalman filtering [10], the optimal Kalman gain can be 

expressed as 
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where the increase in the prediction error or the decrease in the measurement noise will 
lead to the rise in the Kalman gain. 

After the measured value of v is obtained at frame n, the estimated value of it can be 
calculated using its predicted value and the Kalman-gain-weighted innovation: 
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where ( ) ( ) ( )nvnvn Pm ˆ−=α  is the innovation at frame n. 
Updating the estimate of v leads to the renewal of estimation error as 

( ) ( )[ ] ( )nnGn PE
22 1 σσ −= . (12) 

(7) and (9) to (12) form a complete iteration to update the prediction of v. 
After the predicted value of v for frame n+1 is obtained by applying (7) after (11), 

the prediction of a at frame n+1 can be written as 
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( ) ( ) ( )1ˆ1ˆ ++=+ nvnana PmP
 

(13) 

where ( )1ˆ +naP
 is the prediction of a at frame n+1, and am(n) is the searching result of a 

at frame n. ( )1ˆ +naP
 is usually very close to the real value of a(n+1) and the initial 

searching point for a is therefore selected as ( )1ˆ +naP
. 

2.3   Estimating the Power of the Model Noises 

Although the equations listed above seem to have solved our problem, the power of the 
two model noises, σu

2(n) and σw
2(n), remain to be estimated. Correct evaluation of them 

plays a key role in obtaining a proper Kalman gain and thus directly determines the 
performance of the Kalman filter. In the remainder of this section we would like to 
describe our approach to estimate σu

2(n) and σw
2(n).  

As is mentioned before, the measurement noise is caused by the non-infinitesimal 
searching step size in looking for the optimal coordinate transform parameters. For 
simplicity of notation, we denote a(n) as an. Suppose the step size for searching the 
parameter an is Δ , and the searching result is am,n. It is reasonable to assume that the 
true value of an is uniformly distributed over an interval of Δ  centered at am,n; that is, 
the density of the true value of an is  
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The power of searching error of an can be expressed as follows: 
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Since v(n) is the changing rate of an, it is evident that 

( ) 1−−= nn aanv , (16) 

( ) 1,, −−= nmnmm aanv . (17) 

Taking (4), (16) and (17) into consideration, we can derive the power of measurement 
noise σw

2(n) as follows: 
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As the parameter searching processes at different frames are uncorrelated, the cross 
term of (18) is zero. Considering (15), we can reduce (18) to 
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From (19) we can infer that having a finer searching step size can reduce the power of 
the measurement noise, which is just as expected. 

The estimation of σu
2(n), however, is not as straightforward since the motion of the 

target can be arbitrary. Yet we can still acquire its approximate value by evaluating the 
power of the innovation α(n). Considering (3), (4), (5) and (7) simultaneously, one can 
immediately get the following equation which relates the innovation with the 
estimation error and the two model noises: 

( ) ( ) ( ) ( )nwnunen E +−+−= 11α  . (20) 

The uncorrelatedness among the right-hand terms in (20) yields 

( ) ( ) ( ) ( )nnnn wuE
2222 11 σσσσα +−+−=  (21) 

where σα2(n) is the power of the innovation and can be approximated as 
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N is the number of frames over which the power of the innovation is averaged to obtain 
its approximate expectation.  

Combining (19), (21) and (22), we can acquire the estimation of σu
2(n) as follows: 
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Where σE
2(n) is calculated online in the iterations of Kalman filtering. 

So far we have derived the expressions for estimating the power of the two model 
noises. By doing so, we do not have to assign any empirical values to those noises as 
most conventional approaches do. As a result, the method we have proposed can be 
applied to video sequences with various characteristics of target motion and searching 
algorithms with different searching step sizes, without any need to tune the Kalman 
filter manually. 

The last step remaining is to initialize the filter. Since we have no information 
regarding target motion at the very beginning, it is natural to set the initial values of 
both 

Ev̂  and 2
Eσ  to be zero: 

( ) 00ˆ =Ev  , ( ) 002 =Eσ  . (24) 

3   Experimental Results 

In order to examine how the adaptive prediction of the initial searching point in the 
transform parameter space can improve the performance of object tracking, we 
compare the tracking results of two algorithms that are exactly the same in every other 
aspect except that the first algorithm selects the transform parameters predicted by our 
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proposed method as the initial searching point for the next frame, and the other 
algorithm just takes the parameters found in the current frame as the initial searching 
point for the next frame. For simplicity, we denote the algorithm with adaptive 
prediction of initial searching point as Algorithm 1, and the other one is represented by 
Algorithm 2. The model of object motion includes translation and scaling. In both 
algorithms, the searching step size is 1 pixel for horizontal location and vertical 
location, and 0.05 for scale. Both algorithms select the inverse of SSD as the similarity 
function [2], and use gradient descent search algorithm to look for optimal transform 
parameters. Adaptive Kalman appearance filter is employed to update the template. 

Figs. 1 to 3 illustrate how well our proposed method predicts the coordinate 
transform parameters in the next frame. We apply Algorithm 1 to a video sequence 
where the target undergoes much motion both in spatial locations and scales. Both 
actual and predicted values of the coordinate transform parameters for every frame are 
plotted in the same figure.  

It can be seen from the figures that our method gives a very precise prediction of 
what the parameters are going to be in the next frame. The average distance between the 
initial searching point and the actual point in transform parameter space reduces from 
2.7398 to 0.9632 when we use Algorithm 1 instead of Algorithm 2. Such a significant 
drop in the searching distance is extremely beneficial to tracking algorithms in terms of 
enhancing tracking stability and decreasing computational burden, as will be 
demonstrated in the following experimental results. 

Fig. 4 and Fig. 5 exemplify considerable improvement of tracking stability when 
using the adaptive prediction of the initial searching point. When the initial searching 
point is much closer to the actual point in transform parameter space, tracking 
algorithms are less likely to be distracted by local maxima resulting from cluttered 
background, similar objects, or other interferences. This fact is confirmed by our 
experiments in which we deliberately choose a video sequence that has a vehicle 
running on a dark road at night. Due to the darkness, the vehicle is blurred and is 
somewhat similar to the road. When we apply Algorithm 2 to track the vehicle, it is not 
long before the algorithm loses the target because of being distracted by interferences 
from the road, as is shown in Fig. 4. Algorithm 1, however, successfully locks on the 
target throughout the sequence as is demonstrated in Fig. 5. The region in the lower 
right corner of each frame is the overlapped template. 

Computational burden can also be greatly saved by the adaptive prediction of the 
initial searching point. Since the distance between the initial searching point and the 
final result point is substantially reduced, it takes searching algorithms in (1) much 
fewer trials to reach a final status, and computational complexity is therefore 
considerably reduced. Fig. 6 shows the parameter searching trial times of both 
algorithms. The right chart of Fig. 6 demonstrates the case where target has relatively 
high motion. The saving of computational burden is as high as 66.8%. Even in the case 
where target has low motion that is illustrated in the left chart of Fig. 6, Algorithm 1 can 
still lower computational complexity by 27.1%. 

Since only scalar calculations are involved in the adaptive Kalman prediction of the 
initial searching point, the proposed algorithm can be implemented real time at a rate of 
30fps using C codes on a Pentium-4 1.7GHz PC. 
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Fig. 1. Curves of the horizontal location of the target. The curve with circles represents the actual 
horizontal target location of every frame, and the curve with crosses depicts the predicted 
horizontal target location before every new frame is input. 

 

Fig. 2. Curves of the vertical location of the target. The meanings of different types of curves are 
the same as in Fig. 1. 

 

Fig. 3. Curves of the target scale. The meanings of different types of curves are the same as in 
Fig. 1. 
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Fig. 4. Algorithm 2 fails to keep track of the vehicle when facing strong interferences from the 
background. Frame 1, frame 23 and frame 50 are displayed from left to right. 

   

Fig. 5. Algorithm 1 tracks the vehicle perfectly all the time in spite of the existence of strong 
interferences from the background. Frame 1, frame 23 and frame 50 are displayed from left to 
right. 

  

Fig. 6. Curves of parameter searching trial times over frame indices. The curves with circles 
show the result of Algorithm 2, and the curves with crosses illustrate the result of Algorithm 1. 
The left chart demonstrates the case where target has low motion, and the right chart, high 
motion. 

4   Conclusion 

In this paper we propose an algorithm which adaptively predicts possible coordinate 
transform parameters for the next frame and selects them as the initial searching point 
when looking for the real transform parameters. By doing so, tracking algorithms have 
less risk of being distracted by local maxima resulting from interferences, and tracking 
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performance is thus improved. We use an adaptive Kalman filter to achieve this 
purpose, but instead of directly filtering the values of transform parameters, we apply 
the Kalman filter on the changing rate of those parameters to effectively predict their 
future values. Moreover, we quantitatively analyze the cause of the model noises in the 
Kalman filter and derive their analytical expressions, so that the Kalman filter in our 
algorithm is automatically and correctly tuned when the characteristics of target motion 
change over time, or the searching algorithm uses different searching step sizes. 
Experimental results show that our proposed algorithm considerably promotes tracking 
stability while substantially decreasing computational complexity. 
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