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task of non-rigidly registering a face in a still image using a constrained local model
(CLM). A CLM is a commonly used model for non-rigid object registration and
contains two components: (i) local patch-experts that model the appearance of each
landmark in the object, and (ii) a global shape prior describing how each of these
landmarks can vary non-rigidly. Conventional CLMs can be used in non-rigid facial
tracking applications through a track-by-detection strategy. However, the registra-
tion performance of such a strategy is susceptible to local appearance ambiguity.
Since there is no motion continuity constraint between neighboring frames of the
same sequence, the resultant object alignment might not be consistent from frame
to frame and the motion field is not temporally smooth. In this paper, we extend
the CQF fitting method into the spatio-temporal domain by enforcing the appear-
ance consistency constraint of each local patch between neighboring frames. More
importantly, we show, as in the original CQF formulation, that the global warp up-
date can be optimized jointly in an efficient manner. Finally, we demonstrate that
our approach receives improved performance for the task of non-rigid facial motion
tracking on the videos of clinical patients.

Key words: Constrained Local Models, Convex Quadratic Fitting, Non-Rigid Face
Tracking

∗ Corresponding author.
Email addresses: slucey@cs.cmu.edu (Simon Lucey,), wangy@cs.cmu.edu

(Yang Wang,), jsaragih@andrew.cmu.edu (Jason Saragih,),
jeffcohn@cs.cmu.edu (Jeffery F. Cohn).

Preprint submitted to Elsevier 2 March 2009

* Manuscript
Click here to view linked References

http://ees.elsevier.com/imavis/viewRCResults.aspx?pdf=1&docID=3460&rev=0&fileID=72779&msid={1868E58D-123F-462F-B1EE-B0024472E4EC}


1 Introduction

Accurate and consistent tracking of non-rigid object motion, such as facial mo-
tion and expressions, is important in many computer vision applications and
has been studied intensively in the last two decades [2,6,27,26,8,13,17,9,10,1,25,18].
This problem is particularly difficult when tracking subjects with previously
unseen appearance variations. To address this problem, a number of registra-
tion/tracking methods have been developed based on local region descriptors
and a non-rigid shape prior [8,13,14,17,18,22,23,8]. We refer to these family of
methods collectively as a constrained local model (CLM) 1 Probably, the best
known example of a CLM can be found in the seminal active shape model
(ASM) work of Cootes and Taylor [7]. Instantiations of CLMs differ primarily
in the literature with regards to: (i) whether the local experts employ a 1D or
2D local search, (ii) how the local experts are learnt, (iii) how the source image
is normalized geometrically and photometrically before the application of the
local experts, and (iv) how one fits the local experts responses to conform to
the global non-rigid shape prior. Disregarding these differences, however, all
instantiations of CLMs can be considered to be pursuing the same two goals:
(i) perform an exhaustive local search for each landmark around their current
estimate using some kind of patch-expert (i.e., feature detector), and (ii) op-
timize the global non-rigid shape parameters such that the local responses for
all of its landmarks are minimized.

Compared to the holistic representations, such as active appearance mod-
els (AAMs), CLMs offer many advantages when registering “real-world” face
images. First, the ability to employ photometric normalization at each local
expert. Second, the ability to handle larger mismatches than gradient meth-
ods in initial registration due to the use of local search for each landmark.
Third, in comparison to holistic AAMs, CLMs have inherent computational
advantages and can be easily applied to parallel computation architectures.
Finally, the ability to employ local experts that have been discriminatively
trained from large hand labeled offline face datasets and exhibit good gener-
alization performance on unseen images. This is in contrast to holistic AAM
methods that have demonstrated poor generalization when learning from very
large datasets [11].

CLMs can be equally applied to tracking applications as single-image registra-
tion applications through the employment of a track-by-detection paradigm.
In this approach the CLM is initialized by the result of the preceding frame
in the image sequence where on then re-applies the fitting process. However,

1 Our definition of CLMs is much broader than that given by Cristinacce and
Cootes [8] who employ the same name for their approach. Cristinacce and Cootes’
method can be thought of as a specific subset of the CLM family of models.
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the matching performance of the local patch-experts might be susceptible to
local appearance ambiguity. Since there is no motion continuity constraint be-
tween neighboring frames of the same sequence, the resultant alignment might
not be consistent from frame to frame and the motion field is not temporally
smooth.

Inspired by recent work for aligning a set of images in an unsupervised man-
ner [3,16,15,22] we propose a new approach to achieve accurate and consistent
tracking of non-rigid object motion in a video sequence by extending the CLM
method into the spatio-temporal domain. By enforcing the appearance consis-
tency constraint of each local patch between neighboring frames, the temporal
texture coherence is integrated into the CLM framework as a motion smooth-
ness constraint. We make the following contributions in our paper:

• We extend the constrained local model (CLM) method into the spatio-
temporal domain by introducing the appearance consistency constraint of
each local patch between neighboring frames. Furthermore, to incorporate
this local appearance consistency constraint efficiently into the CLM frame-
work, we compute the image error in different reference frames, i.e., between
the input image and the model images from previous frames. (Section 3)
• We show that a specific form of the classic Lucas-Kanade [19] approach

to gradient-descent image alignment can be viewed as a CLM where each
local response surface is indirectly approximated through a convex quadratic
function. Since each of the approximated response surfaces are convex an
explicit solution to the approximate joint minima can be found (since it too
is convex). This process can be iterated until some convergence towards the
actual joint minima is obtained. (Section 4)
• Instead of using computationally expensive generic optimizers such as the

Nelder-Mead simplex [8] method, we propose a convex quadratic fitting
(CQF) approach that is able to directly fit a convex quadratic to both the
local response surface of a local patch-expert and the associated local ap-
pearance consistency constraints. Since each of the approximated response
surfaces is convex, an explicit solution to the approximate joint minima can
be found. As a result, we are able to apply a similar optimization as em-
ployed in the Lucas-Kanade algorithm within the generic CLM framework.
(Section 4 and 6)
• Finally, we demonstrate improved non-rigid face tracking performance on

the video sequences in a clinical archive which contains video clips of pain
patients. Our extended CLM approach exhibits superior performance to
the CLM approach without the local appearance consistency constraint and
leading holistic AAM [6] approaches to non-rigid object tracking. (Section 7)
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2 Learning Constrained Local Models

The notation employed in this paper shall depart slightly from canonical meth-
ods in order to easily allow the inclusion of patches of intensity at each coordi-
nate rather than just pixels. When a template T is indexed by the coordinate
vector x = [x, y]T it not only refers to the pixel intensity at that position, but
the local support region (patch) around that position. For additional robust-
ness the P ×P support region 2 is extracted after the image has been suitably
normalized for scale and rotation to a base template of the non-rigid object.
T (xk) and Y (xk) refer to the vector concatenation of image intensity values
within the kth region (patch) of the template image T and the source image
Y , respectively.

2.1 Estimating Patch Experts

The choice of classifier employed to learn patch experts within a CLM can be
considered to be largely arbitrary allowing the use of generative (e.g., Gaussian
likelihood function) or discriminative (e.g., support vector machine (SVM),
AdaBoost, relevance vector machines (RVM), etc.) local models. We chose
to use a SVM in our work due to its ability to discriminatively learn a lo-
cal expert as well as generalize from thousands training examples. A linear
SVM was chosen in our work over other non-linear kernel varieties due to its
computational advantages in that,

f̂(∆x) =
NS∑
i=1

γiαiTi(x)TY (x + ∆x)

=Y (x + ∆x)T
NS∑
i=1

γiαiTi(x) (1)

where f̂(∆x) is the match-score for the patch-expert at coordinate displace-
ment ∆x from the current patch coordinate center x. Y is the source im-
age, Ti is the ith support vector, αi is the corresponding support weight,
γi ∈ {not aligned (−1), aligned (+1)} is the corresponding support label, and
NS is the number of support vectors.

Training SVM classifiers: Employing a linear SVM is advantageous as
it allows for

∑NS
i=1 γiαiTi(x) to be pre-computed for Equation 1 rather than

evaluated at every ∆x. The support images Ti are obtained from an offline

2 A typical patch size is 15 × 15 in our experiments for a face object with an
inter-ocular distance of 50 pixels.
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training set of positive and negative images. Positive patch examples were
obtained for patches centered at the fiduciary points of our training images,
while negative examples were obtained by sampling patches shifted away from
the ground truth. In our experiments a 15×15 window, centered at each ground
truth position, is used to obtain the image patches for the positive examples.
The negative examples are obtained by shifting the above window within 15
pixels to each ground truth position.

In order to get a good decision boundary in the SVM training, two sampling
strategies are adopted to reduce the similarity between the positive and neg-
ative examples. First, we enforce the center of the negative sampling window
to be at least 2 or 3 pixels away from the ground truth position. Second, for
the fiduciary points on a contour (e.g., the points along the jaw line), it is
reasonable to constrain the search only in the normal direction. Furthermore,
to speed up the training process, we sort the negative examples based on the
sum of squared differences (SSD) between the negative and positive examples
in the descending order, and select the top 5− 10% negative examples for the
SVM training. As demonstrated in Figure 1, the performance of the patch ex-
perts learned by a smaller training set, shown in Figure 1(c) and (e), is almost
the same as the performance seen for experts trained on a larger number of
training examples in Figure 1(b) and (d). A small subset (5%) of the original
negative examples are used in our experiments.

Obtaining Local Responses: Once the patch expert has been trained we
can obtain a local response for an individual patch expert by performing an
exhaustive search of the neighboring region of that patch’s current position
within the source image. In our experiments, we found a search window size
of 15 × 15 pixels for each patch gave good results for a face object with an
inter-ocular distance of 50 pixels.

Example response surfaces are shown in Figure 1. To illustrate the effectiveness
of our patch experts we placed the center of the searching window randomly
away from the ground truth position. From the top row to the bottom in Fig-
ure 1(b-e), it shows the local responses for patch experts describing the left
eyebrow, the nose bridge, the nose end, and the right mouth corner, respec-
tively. As one can see, the estimated responses perform a good job of finding
the ground truth location. All response surfaces were obtained from a linear
SVM.

In Figure 1(b), 125 positive examples and 15k negative examples were used
to train each patch expert, while in Figure 1(c), 125 positive examples and
8k negative examples were used. Both positive and negative examples con-
tained 15 × 15 patches extracted from the training images. As we can see,
the performance of the patch experts learned by a smaller training set, shown
in Figure 1(c) and (e), is almost the same as the performance seen for ex-
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perts trained on a larger number of training examples in Figure 1(b) and (d).
This result demonstrated that our patch-experts had a reasonable amount of
training examples for employment within a CLM framework.

(a) (b) (c) (d) (e)

Fig. 1. Examples of local search responses: (a) is the source image to be aligned.
(b) shows the local search responses using patch experts trained by 125 positive
examples and 15k negative examples. (c) shows the local search responses trained
by 125 positive examples and 8k negative examples. (d) and (e) show the estimated
logistic regression weight values of (b) and (c), respectively. A high intensity value
indicates a small matching error between the template and the source image patch.
Each row in (b-e) shows the responses and weights within a 25 × 25 local search
window. The location of each search window is illustrated in the source image (a)
as a black box, while the red cross illustrate the ground truth alignment. It is
interesting to see that the patch experts learned by a smaller training set (including
8k negative examples) have very similar performance as the ones trained by large
training examples (including 15k negative examples).

2.2 Estimating the PDM

A point distribution model (PDM) [6] is used for a parametric representation
of the non-rigid shape variation in the CLM. The non-rigid warp function can
be described as,

W(z; p) = z + Vp (2)

where z = [xT1 , . . . ,x
T
N ]T , p is a parametric vector describing the non-rigid

warp, and V is the matrix of concatenated eigenvectors. N is the number of
patch-experts. Please note that this PDM notation differs slightly from the
canonical one because z is not necessary the mean shape such as defined in [2].
Procrustes analysis [6] is applied to all shape training observations in order
remove all similarity. Principal component analysis (PCA) [4] is then employed
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to obtain shape eigenvectors V that preserved 95% of the similarity normalized
shape variation in the train set. In this paper, the first 4 eigenvectors of V
are forced to correspond to similarity (i.e., translation, scale and rotation)
variation.

3 Constrained Local Model Fitting

Based on the patch experts learned and the point distribution model in Sec-
tion 2, we can pose non-rigid alignment as the following optimization problem,

arg min
p

∑
k

Ek{Y (xk + Vkp)} (3)

where Ek() is the inverted classifier score function obtained from applying
the kth patch expert to the source image patch intensity Y (xk + ∆xk). The
displacement ∆xk is constrained to be consistent with the PDM defined in
Equation 2, where the matrix V can be decomposed into submatrices Vk for
each kth patch expert, i.e., V = [V1, . . . ,VN ]T .

One potential problem with the above constrained local model is that the
tracking performance is largely dependent on the discriminant performance of
the generic patch experts learned in Section 2.1, and there is no guarantee that
the alignment results will be consistent between different frames of the same
sequence. In order to address this issue, we can extend Equation 3 into the
spatio-temporal domain to include the local appearance consistency constraint
between neighboring frames. Furthermore, inspired by the approach developed
by Baker et al. [3,2], we compute the image error between the input image and
the aligned images from previous frames. In particular, we extend Equation 3
as follows

arg min
p

∑
k

Ek{Y (xk + Vkp)}

+
1

NT0

∑
t∈T0

∑
k

λ(t)k‖Y (xk + Vkp)− Y(t)(x(t)k)‖2 (4)

where T0 = [t0−∆t, t0] is the time interval used to check the local appearance
consistence between the current frame Y and the aligned image Y(t) from the
previous frame at time t. NT0

3 is the number of frames included in T0. λ(t)k is
the weighting coefficient for the appearance consistency constraint term which
is estimated dynamically in Section 5. For clarity, in the rest of this paper we
refer to the first term in Equation 4 as the generic term and the second one
as the consistency term.

3 In our experiments, we typically include 3 previous frames in the appearance
consistency constraint term, i.e., NT0 = 3.
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4 Convex Optimization

In general, it is difficult to solve for p in Equation 4 as there is no guarantee for
the classifier score function Ek() being convex. Previous methods have either
used general purpose optimizers (e.g., Nelder-Mead simplex [20]) or attempted
to pose the problem as a form of graph optimization [8,14]. Unfortunately,
general purpose optimization techniques, such as Nelder-Mead simplex [20],
are often computationally expensive and require good initialization. In order to
employ graph optimization techniques like loopy belief propagation it has been
shown that the warp functionW(z; p) needs to be spatially sparse as described
in [14]. In this section, we propose a new approach to jointly optimize p by
convex quadratic fitting.

4.1 Solving the Consistency Term

Since each error function in the consistency term in Equation 4 takes the
form of a sum of squared differences (SSD), it can be solved efficiently by the
Lucas-Kanade gradient descent algorithm [19,6,2]. For simplicity, we consider
the local appearance consistency error function for the kth patch between the
current frame Y and the aligned image Y(t) from a previous frame t,

arg min
p
‖Y(t)(x(t)k)− Y (xk + Vkp)‖2 (5)

where V is the matrix of concatenated eigenvectors describing the PDM in
Equation 2 and Vk is the submatrix of V for the kth patch. p is a parametric
vector describing the non-rigid warp.

By performing a first order Taylor series approximation at Y (xk + Vkp), we
can rewrite Equation 5 as,

arg min
p
‖D(xk)−GT (xk)Vkp‖2 (6)

which can be expressed generically in the form of a quadratic,

pTVT
k A(t)kVkp− 2bT(t)kVkp + c(t)k (7)

given,

A(t)k = G(xk)G
T (xk)

b(t)k = G(xk)D(xk)

c(t)k = DT (xk)D(xk)

(8)

where D(xk) = Y(t)(x(t)k) − Y (xk) and G(xk) is the 2 × P 2 local gradient
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matrix ∂Y (x)
∂x

for each set of P 2 intensities centered around xk.

Therefore, the original consistency term in Equation 4 can be rewritten as

1

NT0

∑
t∈T0

(
pTVTA(t)Vp− 2bT(t)Vp + c(t)

)
(9)

where,

A(t) =


λ(t)1A(t)1 . . . 0

...
. . .

...

0 . . . λ(t)NA(t)N


b(t) = [λ(t)1b

T
(t)1, . . . , λ(t)NbT(t)N ]T

c(t) = [λ(t)1c(t)1, . . . , λ(t)Nc(t)N ]T

Since each A(t)k is virtually always guaranteed of being positive definite 4 and
the summation of a set of convex functions is still a convex function [5], this
implies the quadratic in Equation 9 is convex and has a unique minima given
λ(t)k ≥ 0.

4.2 Solving the Generic Term

When assuming Ek() is a SSD classifier it is possible to gain a convex quadratic
approximation to the true error responses. A major advantage of these ap-
proximations is that it gives a direct method to gain an estimate of the global
warp update. In this section we shall elucidate upon how we can generalize
this result for any type of objective error function.

Specifically, our approach shall attempt to estimate the parameters Ak, bk
and ck, for each patch response surface, through the following optimization

arg minAk,bk,ck

∑
∆x ‖Ek(∆x)

−∆xTAk∆x + 2bTk∆x− ck‖2

subject to Ak � 0

(10)

where Ek(∆x) = Ek{Y (xk+∆x)}. We should emphasize that Ek() is now not
necessarily a SSD classifier but can be any function that gives a low value for

4 Actually, A(t)k is always guaranteed of being positive semidefinite. In the rare
occurrence that A(t)k is positive semidefinite but not positive definite (i.e., singular)
we can employ a weighted identity matrix to ensure its rank.
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correct alignment. We should note that our proposed approach differs from the
standard Lucas-Kanade algorithm in the sense that the actual error response
for different translations must be estimated over a local region. In the original
Lucas-Kanade approach no such local search responses are required.

After we estimate Ak,bk, and ck in Equation 10 for each patch response
surface, the original generic term in Equation 4 can be rewritten as

∆zTAd∆z− 2bTk∆z + cd

= pVTAdVp− 2bTdVp + cd (11)

where,

Ad =


A1 . . . 0
...

. . .
...

0 . . . AN


bd = [bT1 , . . . ,b

T
N ]T

cd = [c1, . . . , cN ]T

and V is the matrix of concatenated eigenvectors describing the PDM in Equa-
tion 2. We shall refer to this method of fitting a CLM as convex quadratic fitting
(CQF). The keypoint of enforcing the convexity of each local patch response is
to find a convex local function, which is essential to achieve a fast convergence
for the global optimization. The detailed computational complexity analysis
can be found in [24].

Exhaustive Local Search: Rather than solving Equation 10, for computa-
tional efficiency it often convenient to assume that Ak = σI where σ → 0 and
that,

bk = arg min
∆x

Ek(∆x) (12)

which results in finding the minimum point for each response map. We refer
to this approach as exhaustive local search (ELS). ELS is equivalent to how
an ASM performs its fitting procedure [7] and is a good baseline from which
to compare other fitting strategies.

Quadratic Program Curve Fitting: The optimization in Equation 10 is
in general costly if solved directly [5]. One way to reduce the complexity
of Equation 10 is to enforce Ak to be a diagonal matrix with non-negative

diagonal elements. More specifically, for 2D image alignment Ak =

 a11 0

0 a22
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where a11, a22 > 0. As a result, Equation 10 can be simplified as

arg mina11,a22,b1,b2,c
∑
x,y ‖Ek(x, y)

−a11x
2 − a22y

2+ 2b1x+ 2b2y − c‖2

subject to a11 > 0, a22 > 0

(13)

which can be solved efficiently through quadratic programming [5].

Robust Error Function: When the local search responses from our patch
experts have outliers, it might be difficult to have accurate surface fitting. To
address this issue, robust error functions have been used in many registra-
tion approaches [2,21] to improve robustness for non-rigid image alignment.
Although there are many different choices [21], a sigmoid function is selected
similar to the weighting function in Equation 15. In particular, we define the
robust error function in the following form,

%(E(x);σ) =
1

1 + e−‖E(x)‖2+σ

where σ is a scale parameter which can be estimated from E(x). Essentially,
this function assigns lower weights to the response values whose fitting error is
larger than the scale parameter σ, since they are more likely to be the outliers.
As a result, the original curve fitting problem in Equation 10 can be rewritten
as

arg minAk,bk,ck

∑
∆x %(E(∆x);σ)

subject to Ak � 0
(14)

where
E(∆x) = E(∆x)−∆xTAk∆x + 2bTk∆x− ck.

We shall refer to this method of fitting a CLM as robust convex quadratic
fitting (RCQF) [24].

Example Fits: Examples of local response surface fitting can be found in
Figure 2, which illustrates the convex parametric representation of the non-
parametric responses of local patch experts. The red cross shows the ground
truth location in the search window. The closer the peaks of the local responses
are to the red cross indicates the better the performance of the method. We
can see that in most cases ELS, CQF, and RCQF methods can all achieve good
performance. However, our proposed CQF and RCQF methods in (c) and (d)
respectively are less sensitive to local minima than the ELS method in (b). We
should note that although the learned patch responses look smooth, they are
not generated by a mere smoothing step. Instead, they are continuous convex
surfaces achieved by the constrained curve fitting proposed in this paper. The
key point of enforcing the convexity of each local patch response is to find a
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convex local function, which is essential to achieve a fast convergence for the
global optimization.

(a) (b) (c) (d)

Fig. 2. Examples of fitting local search responses: (a) is the local search responses in
Figure 1(d) using patch experts trained by a linear support vector machine (SVM).
(b-d) show the surface fitting results. More specifically, (b) picks the local displace-
ment with the minimum response value in the search window, while (c) and (d)
fit the local search response surface by a quadratic kernel in Equation 13 and a
quadratic kernel with a robust error function in Equation 14, respectively. The
brighter intensity means the smaller matching error between the template and the
source image patch. In each search window, the red cross illustrates the ground truth
location. As we can see, in most cases, the above three methods can all achieve good
performance, while the proposed convex quadratic fitting (CQF) (c) and the robust
convex quadratic fitting (RCQF) (d) methods are less sensitive to local minima than
the exhaustive local search (ELS) method (b).

5 Estimating Weights

The choice of each weighting coefficient λ(t)k plays an important role in ob-
taining the optimal solution of Equation 4. A small value might not be able
to impose enough smoothness constraints on the tracking results while a large
value might cause other issues such as drifting. To address this issue, we can
estimate the weight values λ(t)k dynamically based on how likely the aligned
patches extracted from the previous frames are good templates. Although we
can measure the quality of match by introducing certain prior model such as
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in [22], a simple approach is to update the weights based on the output f̂ of
the support vector machine from Equation 1.

More specifically, an approximate probabilistic output can be obtained by
fitting a logistic regression function [4] to the output f̂ of Equation 1 and the
labels y = {not aligned (−1), aligned (+1)}

P̂ (y = 1|f̂) =
1

1 + eaf̂+b
(15)

where a and b are learned through a cross-validation process. Then we define
λ(t)k using the approximate probabilistic output P̂ (y = 1|f̂(t)k) as follows

λ(t)k = η
(
1− P̂ (y = 1|f̂(t)k)

)
=

ηeaf̂(t)k+b

1 + eaf̂(t)k+b
(16)

where

f̂(t)k = Y(t)(x(t)k)
T
NS∑
i=1

γiαiTi(xk)

where Y(t) is the aligned image of the frame t, Ti is the ith learned support
vector, γi is the corresponding support label, αi is the corresponding support
weight and NS is the number of support vectors. The intuition behind Equa-
tion 16 is that the consistency term only comes to help when the associated
patch experts can not locate the feature points correctly, i.e., the SVM score
f̂(t)k is low.

As discussed in Section 2.1, Equation 16 can be computed efficiently because of
the advantageous property of a linear SVM, which allows for

∑NS
i=1 γiαiTi(x) to

be pre-computed rather than evaluated at every frame. a and b are the same as
in Equation 15 and η is learned through a cross-validation process. As shown
in Figure 4, the choice of η does not have a significant affect on the tracking
performance of our proposed method. In our experiments, we typically set η
a small value 0.1.

6 Our Algorithm

A major advantage of the convex quadratic fitting (CQF) method proposed
in Section 4.2 is that it makes both the generic term and the consistency term
in Equation 4 share the same quadratic form. As a result, we can simplify the
original optimization problem in Equation 4 and solve jointly for the global
non-rigid shape of the object in an efficient manner. More specifically, based
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on Equation 9 and 11 we can rewrite Equation 4 as follows,

arg min
p

pTVTAdVp− 2bTdVp + cd

+
1

NT0

∑
t∈T0

(pTVTA(t)Vp− 2bT(t)Vp + c(t))

= arg min
p

pTVTAVp− 2bTVp + c (17)

where,

A = Ad + 1
NT0

∑
t∈T0

A(t)

b = bd + 1
NT0

∑
t∈T0

b(t)

c = cd + 1
NT0

∑
t∈T0

c(t)

where V is the matrix of concatenated eigenvectors describing the PDM de-
fined as in Equation 2, p is a parametric vector describing the non-rigid warp,
N is the number of patch-experts, and (Ad,bd, cd) and (A(t),b(t), c(t)) are
defined in Equation 11 and 9 respectively.

Furthermore, as discussed in Section 4.1 and 4.2 Ad and A(t) are both positive
definite. Since the summation of a set of convex functions is still a convex func-
tion [5], given λ(t)k ≥ 0 it is possible to solve not only for the local translation
updates but the entire warp update p explicitly,

p =
(
VTAV

)−1
VTb (18)

where V is the matrix of concatenated eigenvectors describing the PDM de-
fined in Equation 2.

When the robust error functions are applied to the CLM fitting as in Equa-
tion 14, by performing a first-order Taylor expansion of %(E(∆x);σ), we can
derive the global update ∆p explicitly in a similar form to Equation 18 where

A = BAd + 1
NT0

∑
t∈T0

A(t)

b = Bbd + 1
NT0

∑
t∈T0

b(t)

B is a 2N × 2N diagonal matrix with

B(i,i) =
∂%(E(xk, yk);σk)

∂xk

B(i+1,i+1) =
∂%(E(xk, yk);σk)

∂yk

where i = 2k and k = 1 . . . N .

14



Input:- learned patch experts, source image (Y ),
aligned images from the previous frames (Y(t)),
Jacobian matrix (V),
initial warp guess (p),
index to the template (z), threshold (ε)

Output:- final warp (p)

(1) Warp the source image Y with the current similarity transform from p.

(2) Compute the local responses E based on the learned patch experts and the
source image Y .

(3) Estimate the convex quadratic curve fitting parameters Ak, bk and ck from
Equation 13 for each patch.

(4) Compute the weights λ(t)k using Equation 16.

(5) Estimate the warp update ∆p using Equation 18.

(6) Update the warp z′ =W(z; p) using W(z; p)←W(z; p) ◦W(z; ∆p).

(7) Repeat steps 1-6 until ||∆p|| <= ε or max iterations reached.

Algorithm 1. The outline of our spatio-temporal convex quadratic fitting (ST-
CQF) method.

Since we are only using an approximation to the true SSD error surface it
is necessary within the Lucas-Kanade algorithm to iterate this operation and
constantly update the warp estimate p until convergence. For clarity, we list
the outline of our spatio-temporal convex quadratic fitting (ST-CQF) method
in Algorithm 6.

7 Experiments

We conducted our experiments on a clinical archive, which contains video clips
of clinical patients with shoulder injuries. These clips have a large amount of
head motion and facial expressions. All the images had 66 fiducial points
annotated as the ground truth data. To make this task even more challenging,
we trained all models, including the PDM and the patch experts, separately
on the MultiPIE face database [12] which does not include any subjects from
the clinical archive.

15



7.1 Evaluation

In all our experiments the similarity normalized base template had an inter-
ocular distance of 50 pixels. For a fair comparison, we took into account dif-
fering face scales between testing images. This is done by first removing the
similarity transform between the estimated shape and the base template shape
and then computing the RMS-PE between the 66 points. To compare the per-
formance of different algorithms we employed an alignment convergence curve
(ACC) [8]. These curves have a threshold distance in RMS-PE on the x-axis
and the percentage of trials that achieved convergence (i.e., final alignment
RMS-PE below the threshold) on the y-axis. A perfect alignment algorithm
would receive an ACC that has 100% convergence for all threshold values.

7.2 Comparison Results

In this section we evaluate the performance of our proposed algorithm to track
non-rigid facial motion in video sequences. To evaluate the performance we
conducted comparison experiments on a subset of a clinical archive which
included 22 video clips of 10 clinical patients with significant head motion
and facial expressions. There are 200 − 400 frames in each video sequence.
We trained all models, including the PDM and the patch experts, separately
on the MultiPIE face database [12]. Since no subjects are shared between
the training and testing databases, the appearance and shape variances are
very different between them which makes the face alignment/tracking task a
very challenging problem. For completeness, we also included the simultaneous
AAM method which is considered one of the leading algorithms for holistic
non-rigid alignment [2]. In our results we shall refer to this algorithm simply
as the AAM method. Figure 3 shows the results of our comparison.

As discussed in Section 1, the CLM methods have several advantages over
the holistic AAM method in terms of accuracy and robustness to appearance
variation. The results in Figure 3 on the clinical archive further support these
claims. We can see in Figure 3 that the CLM algorithms all outperformed the
AAM method. Furthermore, the spatio-temporal convex quadratic fitting (ST-
CQF) method proposed in Section 6 received better performance than both
the robust convex quadratic fitting (RCQF) and convex quadratic fitting (CQF)
methods by integrating the local appearance constraint. One hypothesis is
that the patch experts trained in one data set does not perform as well in a
new data set. By enforcing the local appearance consistency constraint, the
joint optimization can reduce the local appearance ambiguity and improve the
robustness and accuracy of the non-rigid alignment.
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Fig. 3. A comparison of tracking results for 22 video clips of 10 pain patients with
significant head motion and facial expression. Each video has 200 − 400 frames.
We trained all models, including the PDM and the patch experts, separately on
the MultiPIE face database [12]. Three methods were included in the comparison:
(i) spatio-temporal convex quadratic fitting (ST-CQF), (ii) convex quadratic fitting
(CQF) and (iii) active appearance model (AAM). ST-CQF and CQF with robust
error functions, i.e., ST-RCQF and RCQF, were also included in the comparison
experiments. The weighting scale factor η was 0.1 in both ST-CQF and ST-RCQF.
Conforming to Section 1, the CLM methods all outperformed the holistic AAM
method in terms of higher alignment accuracy and convergence rates. Furthermore,
the proposed ST-CQF method had better alignment performance than both the
RCQF and CQF methods.

An interesting observation in Figure 3 is that there is not much difference be-
tween the performance of ST-CQF and ST-RCQF. One potential explanation
is that the temporal texture consistency constraints greatly remove the outliers
occurred to the local patch-expert matching, which improves the robustness of
the object alignment in a similar way as the robust error functions. Therefore
the proposed ST-CQF method can achieve accurate and robust object track-
ing performance without using the computationally expensive robust error
functions. Examples of alignment result on different subjects are also shown
in Figure 5 and 6 to illustrate the performance of the three different methods
compared in Figure 3(a).

Furthermore, as described in Section 5, the weights for the consistency term
in the overall objective error function 4 is computed based on the parameter
η in Equation 16. To analyze how sensitive the performance of our proposed
tracking method is to the value of η, we also conducted comparison experi-
ments with a wide range of η values. The results are reported in Figure 4. The
proposed spatio-temporal convex quadratic fitting (ST-CQF) method with
different η values all had much better performance than the convex quadratic
fitting (CQF) method without the temporal appearance consistency constraint
(i.e., η = 0). Furthermore, the choice of different weights η does not have a
significant affect the tracking performance of our proposed method.
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Fig. 4. A comparison of tracking results with different weights η for the consistency
term. The same training and testing dataset were used as described in the cap-
tion of Figure 3. The proposed spatio-temporal convex quadratic fitting (ST-CQF)
method had much better performance than both the robust convex quadratic fitting
(RCQF) and the convex quadratic fitting (CQF) methods. Furthermore, the choice
of different weights η does not have a significant affect to the tracking performance
of our proposed method.

8 Conclusion and Future Work

In this paper, we proposed a new discriminative approach to tracking non-
rigid object motion, such as facial expressions, in an efficient and unsuper-
vised manner. By extending the canonical constrained local models (CLM)
framework [8] into the spatio-temporal domain, the proposed approach can
reduce ambiguity and increase accuracy. Furthermore, we formulated the op-
timization problem into a convex quadratic curve fitting framework whose
generic term and consistency term share the same quadratic form. This con-
vex quadratic framework was motivated by the effectiveness of the canonical
Lucas-Kanade algorithm when dealing with a similar optimization problem.
By enforcing this convexity it was possible, through an iterative method, to
solve jointly for the global non-rigid shape of the object.

We evaluated the performance of our proposed method using the videos from a
clinical archive which contains video clips of pain patients. The experimental
results demonstrated that our spatio-temporal convex quadratic (ST-CQF)
CLM has better alignment performance than other evaluated CLMs with-
out the local appearance consistency constraint and leading existing holistic
methods for alignment/tracking (i.e., AAMs). In future work, we shall investi-
gate other discriminant classifiers such as boosting schemes [4,18] or relevance
vector machine (RVMs) [4] to further improve the performance of our patch
experts. We would also like to explore alternate geometric constraints to han-
dle large deformations and occlusion.

18



Frame 77: (a) AAM (b) RCQF (c) ST-CQF

Frame 237: (d) AAM (e) RCQF (f) ST-CQF
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(g) Tracking Error Comparison

Fig. 5. Examples of tracking performance on an unseen facial expression sequence.
Since the MultiPIE face database [12] does not include the lip tightening expression,
the appearance variation around the lips was not included in the training dataset.
There are 338 frames in the sequence and the first and second row shows the tracking
results of the 77th and 237 frame, respectively. The first column (a,d) shows the
resulting alignment from the holistic active appearance model (AAM), the second
column (b,e) from the robust convex quadratic fitting (RCQF), and the third column
(c,f) from our spatio-temporal convex quadratic fitting (ST-CQF) method. The plot
in the third row shows the comparison of tracking error (RMS-PE) on each frame
of the whole sequence between the 5 methods as described in Figure 3, i.e., AAM,
CQF, RCQF, ST-CQF and ST-RCQF. The weighting scale factor η was set as 0.1
in both ST-CQF and ST-RCQF. Since this facial expression was not included in
the training database, the learned appearance model could not find good matching
around the lips even with the help of robust error functions. However, our proposed
ST-CQF and ST-RCQF methods can achieve a good alignment performance by
enforcing the local appearance consistency in the temporal domain.
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Frame 55: (a) AAM (b) RCQF (c) ST-CQF

Frame 98: (d) AAM (e) RCQF (f) ST-CQF
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(g) Tracking Error Comparison

Fig. 6. Comparison experiments on drifting. There are 202 frames in the sequence
and the first and second row shows the tracking results of the 55th and 98th frame,
respectively. The plot in the bottom row shows that both the RCQF and CQF meth-
ods started to drift around the 90th frame while our proposed ST-CQF method
can maintain a consistent tracking performance with a high accuracy. The first
column (a,d) shows the resulting alignment from the holistic active appearance
model (AAM), the second column (b,e) from the robust convex quadratic fitting
(RCQF), and the third column (c,f) from our spatio-temporal convex quadratic
fitting (ST-CQF) method. The plot in the third row includes the comparison of
tracking error (RMS-PE) through the whole sequence between the 5 methods as
described in Figure 3, i.e., AAM, CQF, RCQF, ST-CQF and ST-RCQF. The weight-
ing scale factor η was 0.1 in both ST-CQF and ST-RCQF. Our proposed ST-CQF
and ST-RCQF methods had much more accurate and temporally smoother tracking
results than both CQF and RCQF methods.

145703.

20



References

[1] S. Avidan. Support vector tracking. PAMI, 26(8):1064–1072, August 2004.

[2] S. Baker and I. Matthews. Lucas-Kanade 20 years on: A unifying framework:
Part 1: The quantity approximated, the warp update rule, and the gradient
descent approximation. IJCV, 2004.

[3] S. Baker, I. Matthews, and J. Schneider. Automatic construction of active
appearance models as an image coding problem. PAMI, 26(10):1380–1384,
October 2004.

[4] C. M. Bishop. Pattern Recognition and Machine Learning. Springer, 2006.

[5] S Boyd and L. Vandenberghe. Convex Optimization. Cambridge University
Press, 2004.

[6] T. F. Cootes, G. J. Edwards, and C. J. Taylor. Active appearance models. In
ECCV, volume 2, pages 484–498, 1998.

[7] T.F. Cootes, C.J. Taylor, D.H. Cooper, and J. Graham. Active shape models
- their training and applications. , 61(2), january 1995. Computer Vision and
Image Understanding, 61(2), 1995.

[8] D. Cristinacce and T. F. Cootes. Feature detection and tracking with
constrained local models. In BMVC, pages 929–938, 2006.

[9] N.D.H. Dowson and R. Bowden. N-tier simultaneous modelling and tracking
for arbitrary warps. In BMVC, page II:569, 2006.

[10] P.F. Felzenszwalb and D.P. Huttenlocher. Pictorial structures for object
recognition. IJCV, 61(1):55–79, January 2005.

[11] R. Gross, S. Baker, and I. Matthews. Generic vs. person specific active
appearance models. Image and Vision Computing, 23(11):1080–1093, November
2005.

[12] R. Gross, I. Matthews, J. Cohn, T. Kanade, and S. Baker. The CMU Multiple
pose, illumination and expression (MultiPIE) database. Technical Report CMU-
RI-TR-07-08, Robotics Institute, Carnegie Mellon University, 2007.

[13] L. Gu and T. Kanade. 3D Alignment of face in a single image. In CVPR,
volume 1, pages 1305–1312, 2006.

[14] L. Gu, E.P. Xing, and T. Kanade. Learning gmrf structures for spatial priors.
In CVPR, pages 1–6, 2007.

[15] I. Kokkinos and A.L. Yuille. Unsupervised learning of object deformation
models. In ICCV07, pages 1–8, 2007.

[16] E.G. Learned Miller. Data driven image models through continuous joint
alignment. PAMI, 28(2):236–250, 2006.

21



[17] L. Liang, F. Wen, Y.Q. Xu, X. Tang, and H.Y. Shum. Accurate face alignment
using shape constrained Markov network. In CVPR, pages I: 1313–1319, 2006.

[18] X.M. Liu. Generic face alignment using boosted appearance model. In CVPR,
pages 1–8, 2007.

[19] B. Lucas and T. Kanade. An iterative image registration technique with an
application to stereo vision. In International Joint Conference on Artificial
Intelligence, pages 674–679, 1981.

[20] J. A. Nelder and R. Mead. A simplex method for function minimization.
Computer Journal, 7:308–313, 1965.

[21] Barry-John Theobald, Iain Matthews, and Simon Baker. Evaluating error
functions for robust active appearance models. In International Conference
on Automatic Face and Gesture Recognition, pages 149–154, 2006.

[22] K.N. Walker, T.F. Cootes, and C.J. Taylor. Automatically building appearance
models from image sequences using salient features. IVC, 20(5-6):435–440, 2002.

[23] Y. Wang, S. Lucey, and J. Cohn. Non-rigid object alignment with a mismatch
template based on exhaustive local search. In IEEE Workshop on Non-rigid
Registration and Tracking through Learning, 2007.

[24] Y. Wang, S. Lucey, and J. Cohn. Enforcing convexity for improved alignment
with constrained local models. In CVPR, 2008.

[25] O. Williams, A. Blake, and R. Cipolla. Sparse Bayesian learning for efficient
visual tracking. PAMI, 27(8):1292–1304, August 2005.

[26] J. Xiao, S. Baker, I. Matthews, and T. Kanade. Real-time combined 2d+3d
active appearance models. In CVPR, pages II: 535–542, 2004.

[27] Y. Zhou, L. Gu, and H. Zhang. Bayesian tangent shape model: Estimating
shape and pose parameters via Bayesian inference. In CVPR, volume 1, pages
109–116, 2003.

22


