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Abstract

We consider the problem of discovering discriminative
exemplars suitable for object detection. Due to the diver-
sity in appearance in real world objects, an object detec-
tor must capture variations in scale, viewpoint, illumination
etc. The current approaches do this by using mixtures of
models, where each mixture is designed to capture one (or
a few) axis of variation. Current methods usually rely on
heuristics to capture these variations; however, it is unclear
which axes of variation exist and are relevant to a particular
task. Another issue is the requirement of a large set of train-
ing images to capture such variations. Current methods
do not scale to large training sets either because of train-
ing time complexity [31] or test time complexity [26]. In
this work, we explore the idea of compactly capturing task-
appropriate variation from the data itself. We propose a two
stage data-driven process, which selects and learns a com-
pact set of exemplar models for object detection. These se-
lected models have an inherent ranking, which can be used
for anytime/budgeted detection scenarios. Another benefit
of our approach (beyond the computational speedup) is that
the selected set of exemplar models performs better than the
entire set.

1. Introduction
Object detection in images is a challenging problem be-

cause objects in the real world vary greatly in visual appear-
ance. Even objects of a single category, e.g., car, exhibit a
lot of diversity in color, shape, size, viewpoint, illumination
etc. Capturing all such variation is the key to modeling a
good object detector.

Current object detection methods e.g., [8, 11, 18] are
trained on training sets e.g., [10] curated to represent such
variations. These methods try to address several aspects
of this diversity by segmenting the training set into com-
ponents corresponding to different axes of variation. For
example, [11] trains a mixture of detectors, where each
mixture corresponds to a “canonical-viewpoint” (based on
aspect-ratio); [8] further enriches this model by training
mixtures based on visual-subcategories.

(a) Input Exemplars

(b) Selected Exemplars

Figure 1: We start with a large set of exemplars and remove
redundancy to select a compact set that captures variation
in the data. The selected exemplars are highlighted in red.

An attractive approach advocated in recent works [18,
26] bypasses the problem of determining the “right” mix-
ture by training a separate model for each instance of an ob-
ject (exemplar model). These exemplar based approaches
are attractive because (by design) they represent each in-
stance separately, hence trying to capture all possible varia-
tions. But they become impractical as the size of the train-
ing data increases; primarily because, at test time, the com-
putation time required to evaluate an ensemble of detectors
grows linearly with the size of the training set. Even adding
heuristics for greedily selecting (or pruning) detectors [25]
does not address this problem.

Ideally, one would like to use as many training samples
as possible, e.g., going from the few hundreds in current
datasets to many tens of thousands, to get a complete cov-
erage of appearance variations. Unfortunately, this would
yield unacceptably high cost at test time for exemplar de-
tectors. Therefore, in this paper we explore the basic ques-
tion: Is it possible to process the training images to select
a manageable set of detectors at training time, while main-
taining detection performance? Specifically, we propose a
two-stage approach: we start by pruning the set of training
samples to reduce redundancy, and then we select a subset
of the surviving (or pruned) samples that maximizes overall
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performance on a held-out set (see Figure 1). Our approach
is appropriate for large datasets, that have both redundancy
and variation e.g., [15], and thus can be compacted. How-
ever, it is not relevant for smaller datasets, that do capture
variation but have minimal redundancy e.g., [10].

Our contributions are three-fold. First, we show a prin-
cipled approach to go from raw images to a compact set
of ranked detectors, without making any assumptions about
the underlying object category. Second, we show an effec-
tive task-based pruning method and an ensemble selection
method, designed for object detectors. Together, they ac-
count for both diversity and performance. Finally, we show
that it is possible for a smaller set of detectors to give better
performance at a lower computational time when compared
to using the entire set (section 5.4).

We strongly believe that the problem of processing large
amounts of training data to produce compact set of detectors
has important practical ramifications. For example, a natu-
ral way of training vision systems would be to present them
with training samples from a large set of videos, e.g., as
acquired from discovery/always-on/wearable systems like
first-person-vision cameras, surveillance cameras, robotics
systems [4, 24], instead of providing a small set of individ-
ual frames. Such systems would have to deal with hundreds
of thousands of samples, for which intelligent detector se-
lection is imperative. In robotics, or in any other applica-
tions requiring time-bounded response with bounded com-
putation [16], it is critical to select and rank detectors out of
a large pool. In that respect, we also explore the feasibility
of ranking the detectors to make the approach suitable for
budgeted detection.

Finally, we would like to emphasize that our aim is to
show a scalable way of using Exemplar-SVM (ESVM) de-
tectors, but not to improve them or to introduce a new, com-
plete object detection system. In particular, our focus is
on scenarios with a lot of redundancy, e.g., learning from
videos of objects. Exemplar detectors are gaining popu-
larity in situations where detection performance is not the
only goal. They provide benefits like geometry transfer, la-
bel transfer [25, 26], segmentation transfer [35] etc. We
hope that the vision community finds this to be a scalable
approach of using exemplar detectors.

2. Related Work
The question we explore in this paper has connections to

many areas of machine learning and computer vision.
It is related to the general problem of classifier selec-

tion which has attracted a lot of interest [2, 3, 7, 19, 32]
in the past decade. The selection of a diverse, discrimina-
tive and compact set of models is becoming fundamental to
many problems today, as we start dealing with increasing
amounts of data. These ensemble selection methods can
be broadly classified in two categories: static and dynamic.
Static methods perform this selection offline without any

test time (or run-time) knowledge. For example, [21] which
uses k-means to cluster the data, and then find best clas-
sifiers for each cluster. Dynamic methods [14, 27] on the
other hand, use test time information to do this selection,
e.g., recommender systems [27] rely on probing the test set
to provide the final ensemble. Our method follows the for-
mer category as all the computation is done offline without
any test time information.

Caruana et al. [3] pose the ensemble selection problem
as a greedy search which minimizes the ensemble error.
Their ensemble is formed using a library of various clas-
sifiers like Support Vector Machines, Artificial Neural Net-
works, Decision Trees etc.; and at test time, the predictions
are averaged over all models in the ensemble. Their follow-
up work [2] performs in-depth analysis of these methods,
studying the importance of pre-processing (or model library
pruning), dependence on varying training set sizes, initial-
ization of the ensemble, performance metrics etc. We ana-
lyze our approach using control experiments in section 5 on
similar lines. Kuncheva et al. [20] study various metrics of
diversity in classifier ensembles and their relationship with
ensemble accuracy. It highlights the issue that there is no
strict definition of diversity of ensembles, and some inter-
pretations may not be useful for accuracy. In special cases,
diversity has been recognized as the key factor for success
of these methods [5, 22].

Most of these methods [3, 16] require that the “scores”,
within an ensemble, be combined by weighted averaging
or majority voting schemes; which is suited for classifier
ensembles. However, for the task of object detection, a
weighted average strategy is not feasible. A standard ob-
ject detector (model) is designed to give sparse detections
over an image, which may or may not exactly correspond to
detections from other models. Hence, the accepted strategy
is to do a max-pooling operation on all the detections to pro-
duce the final result. Additional complications come from
the fact that the performance criteria for the detection task
(average precision [10]) also penalizes multiple detections
of the same instance. This is a subtle but important differ-
ence between classification and detection, which impacts
the choice of ensemble selection methods. In this paper, we
use the terms classifier and detectors interchangeably.

Other approaches in the computer vision community are
to either find “canonical-viewpoints” [11] or visual sub-
categories [8] for object detectors. However, they specifi-
cally require the number of clusters to be specified. Other
approaches deal with specific variations; e.g. Bourdev et
al. [1], Gu et al. [17] and Park et al. [28], each captures
only one type of variation in the object category - either
the pose, the viewpoint or the scale respectively. Our pro-
posed approach does not target any particular variation. In
fact, it tries to capture discriminative variation in the data
in a data-driven manner. In a concurrent work [23], the au-
thors propose an approach for selecting (ranking and greed-



ily sorting) training samples, and show that training on a
subset maybe better than training on the entire set (which
are also corroborated by our findings).

3. Problem Statement
We start with a large set of labeled images I containing

instances of the object category of interest. We assume that
I is very large and may include redundant images. Because
of the size of I, it is not possible to use the entire library
of “exemplar” detectors L trained on each instance of I.
Hence, our first objective is to get a considerably smaller
set of detectors D ⊂ L while preserving as much of the
detection performance from the original set as possible. At
test time, we apply all of the detectors in D to the image and
combine them through max-pooling. In addition, we also
wish to generate a ranking of the detectors in D (at training
time) so that at test time, we can dynamically choose the top
ranked detectors from D to fit a limited computation budget.

4. Our Approach
We follow a two-step process to obtain D from I. The

first step is to prune the large image set I to a much smaller
set Ip. In the second step, we perform detector selection
and ranking using the pruned set Ip. As we shall see later,
for |Ip| = n, our selection algorithm is O(n2). Addition-
ally, the selection would require training n Exemplar-SVMs
(ESVMs) using hard negative mining which is computation-
ally very expensive. Thus, selection becomes tractable only
if we obtain a small n by pruning first. Throughout these
steps we maintain a separate validation set V which remains
constant. Figure 2 illustrates this process.

4.1. Pruning
The pruning stage is important for two main reasons

- computational tractability and preventing overfitting [3].
A natural baseline for pruning is by directly grouping
the training exemplars into a smaller set of clusters using
appearance-based similarity. For this, we use the recent ap-
proach of sparse modeling [9] that considers image features
alone. The authors show that on image data this technique
outperforms existing methods. Sparse modeling considers
all the data points as columns in a matrix Y and tries to
find a sparse coefficient matrix C that minimizes the recon-
struction error. The coefficients of the matrix C also indi-
cate which data points are more relevant for reconstruction.
Thus, they provide a ranking amongst data points. The opti-
mization problem is written in Equation 1. λ represents the
tunable Lagrange multiplier.

min
C

λ∥C∥1,2 +
1

2
∥Y − Y C∥2F s.t. 1⊤C = 1⊤ (1)

The main drawback of this approach is that it does not
take the detection task into account. We propose an alterna-
tive method that uses task-based similarity and show that it
is better suited for the pruning.

In our pruning method, we train a weak Exemplar-LDA
(ELDA) [18] detector for each bounding box in the set I.
We use this approximate detector in place of the full fledged
ESVM because training these detectors involves just a few
matrix multiplication operations (a very fast operation),
which makes training feasible even on very large sets I. We
compute detections and corresponding scores of these EL-
DAs on the set V . We then form a bipartite graph between
the detectors and their detections on V . Let M denote the
adjacency matrix (of size ELDAs×detections) of this bipar-
tite graph with edge-weights corresponding to the score of
the detection. We define a set of common detections (Bij)
between detectors i, j to be those detections w which have
high overlap, e.g., detected bounding boxes overlapping by
at least 80%. We construct an indegree matrix D (of dimen-
sion detections×detections) such that Dww = indegreew is
the number of detectors firing on w, with threshold > 0.
Our affinity matrix between the detectors is computed as

A = MD−1M⊤ ⇔ Aij =
∑

w∈Bij

scoreiw scorejw
indegreew

The term Aij captures the detection task-based similar-
ity between detectors i and j. Hence, Aij is high even if
the detectors are poorly trained but give similar detections.
Note that we do not use ground-truth labels in V to form A,
so we can use any arbitrary unlabeled dataset instead of V .

The matrix A obtained above has sparse connectivity and
accounts only for pairwise similarities between detectors.
We can extend this to n-hop similarities by using An in-
stead. We then perform affinity propagation clustering [13]
on An. For each cluster, we nominate its best ELDA as
found by affinity propagation. Many existing clustering
techniques like k-means, spectral clustering etc. explicitly
require the number of clusters as input. In our case the num-
ber of clusters captures the variation in the data, and is not
known apriori for a given dataset. Therefore, we find affin-
ity propagation suitable for our clustering problem. Figure 3
shows some qualitative results of this approach.

It is only natural to ask if we throw away too much in-
formation by picking only one sample from a cluster. If the
result of clustering is good, then each cluster has detectors
which are similar in performance and capture similar varia-
tions in the object. Hence, the search space for one cluster
is expected to be flat in terms of performance. Picking a
locally best representative is an effective technique in such
flat search spaces [29].

The cluster centers thus found give us our pruned set of
ELDAs. Since each ELDA corresponds to exactly one in-
stance of the object, we get our pruned set Ip.

4.2. Detector selection
Given the considerably reduced subset Ip generated by

the pruning step, we can now train stronger ESVMs on Ip.
These form our library Lp. Our goal is to find a compact,
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Figure 2: The proposed two stage pruning and selection process for object detectors. We learn a compact, ranked set of
detectors starting from the raw images in a purely data-driven manner. This ranked set can be used for budgeted detection.

Figure 3: Qualitative results for Exemplar-LDA based pruning. We show two clusters found by affinity propagation, and
highlight the selected representatives. The images are scaled to equal height for better visualization.

ranked subset D ⊂ Lp with diverse and accurate classi-
fiers. Since pruning gives us a considerably reduced library
to start with, we can afford to use moderately expensive se-
lection procedures.

Similar to the naı̈ve way of pruning, one can select de-
tectors based on just the exemplar images of the detectors,
without using task-based information. For this method, we
try the ranking provided by sparse-modeling (obtained by
the matrix C in Equation 1). Another obvious strategy is
to consider the individual performance of detectors in Lp

on V . We can pick the top g individually best performing
detectors. One can use this individual ranking and select en-
tire ensemble (g = |Lp|) [25]. Alternatively, this can be the
basis for seeding the ensemble (g < |Lp|) [3]. We call these
the “greedy ranking” and the “greedy seeding” algorithms
respectively.

In our proposed approach, we use forward selection [32]
to incrementally select models from Lp to form D, while
performing hill-climbing on the validation set V . The algo-
rithm does this by a series of greedy choices (also referred to
as forward selection). At each iteration, we select, without
replacement, from Lp a single classifier such that the over-
all error of the ensemble is minimized on the validation set.
We can use any metric mp to measure this error. We stop the
selection as soon as this error starts increasing. The order
in which we select the detectors gives us their ranking. Our
selection algorithm is detailed in Algorithm 1 (complexity
of O(n2) for |Ip| = |Lp| = n). Our algorithm is similar
to that of [3]. Such simple selection algorithms have been
shown to achieve state-of-the-art results when compared to
more complicated approaches [3].

Caruana et al. [2, 3] show that such a selection strategy is
prone to overfitting. In addition to pruning, they use meth-
ods like bagging and selection with replacement to counter
this. They use majority voting in the selected ensemble for
computing the output. In our case, we cannot use these
methods. Our detectors are “exemplar” based and hence
cannot use bagging. Selection with replacement and major-
ity voting do not help since we do a max-pooling operation
on the ensemble. Hence, it does not matter how many times
a detector appears in the ensemble. Not using these meth-
ods puts our forward selection at a risk of overfitting and
not ensuring diversity. However, as we show empirically
in sections 5.1 and 5.4, using a large validation set V avoids
overfitting, and diversity may be incorporated in the forward
selection metric mp.

Algorithm 1 Our ensemble selection algorithm

Input: Library of detectors Lp, validation set V , perfor-
mance metric mp

Output: A ranked set D of detectors. D ⊂ Lp

Initialize: D = ϕ; R = Lp

while R ̸= ϕ do
t∗ = argmin

t∈R
Error(D ∪ t,V,mp)

if Error(D ∪ t∗,V ,mp) < Error(D,V ,mp) then
R = R\{t∗}; D = D ∪ t∗

else
break

end if
end while
return D and the order of selection of t∗s as ranking



5. Experiments
We now provide experimental analysis which highlight

the advantages of the proposed pruning and selection ap-
proach. Our experiments are designed to show that both
pruning and selection are extremely important when dealing
with large datasets and exemplar detectors. We first present
controlled experiments in Sections 5.1-5.3 which analyze
both these stages in isolation. Finally, in Section 5.4, we
compare our two-stage approach to the relevant baselines.
As explained in Section 1, our technique is suitable for
datasets that have both redundancy and variation.
Dataset: We use the training set from the KITTI
dataset [15]. This set contains about 7500 labeled images,
sampled from videos captured by a camera mounted on a
vehicle, and thus have a lot of redundancy. These images
capture a wide range of conditions (illumination, view-point
and scale). Therefore, the dataset meets both our require-
ments of redundancy and variation. We consider cars as
our object of interest.
Metrics: We use the PASCAL VOC 2007 [10] criterion
for detection and measure performance using mean Aver-
age Precision (mAP). This detection criterion determines
true positives as those with greater than 0.5 intersection
over union with ground-truth i.e., the Jaccard coefficient,
and counts redundant detections as false positives.
Training: We select a test set of 4450 images and split the
remainder set equally for training and validation. Follow-
ing [15] we consider only large (> 2000 pixels in area),
non-occluded and non-truncated bounding boxes for train-
ing and testing. We train ESVMs using 5000 random im-
ages from Flickr as our negative set [34]. Since, these ES-
VMs are trained individually, their raw scores cannot be
compared. Hence, we use Platt calibration [26, 30] (on val-
idation set) to interpret the SVM scores as probabilities.
Pruning baselines: We use sparse modeling [9] on HOG
features [6]. Sparse modeling gave competitive results for
finding representative images and like our method, it dis-
covers the number of clusters. We first cluster the im-
ages into 5 clusters based on aspect ratio. We then use
sparse modeling on each cluster. In their code, we set a
very high regularization parameter (≈ 105) to get a rea-
sonably sized pruned set. We also tried k-means on the
ELDAs, HOG Features, RGB values. We varied k in the
range [100, 250]. Note that we had to repeat the entire prun-
ing/selection pipeline (and training ESVMs) for each value
of k. We report the results for the best value of k
ELDA Pruning: We perform ELDA Pruning after aspect
ratio clustering (similar to the Sparse modeling baseline).
We consider 5-hop distances in our affinity matrix.
Selection baselines: We use appearance-based ranking pro-
vided by sparse modeling [9]. We use greedy ranking [25]
as another baseline. We also evaluate using greedy seed-
ing [3] for the selection algorithm.
Selection Method: We use our selection algorithm as de-

scribed in Algorithm 1 with the mAP metric [10].
All these pruning/selection methods are described in sec-
tions 4.1 and 4.2.

5.1. Diversity in the selection algorithm
We analyze the relation between diversity and perfor-

mance in our selection algorithm. Specifically, we use sam-
ple weighting strategies [12, 33] to see if we gain perfor-
mance by increasing diversity. Such strategies downweight
correct detections and upweight incorrect detections, thus
helping gain diversity (we use the downweighting scheme
from Adaboost [12]). We also use an extreme version
of downweighting (“removal”), where we set the weights
of correct detections to zero, essentially “removing” them
from further consideration. This sets a bound on perfor-
mance for the weighting strategies.

Figure 4 shows the results for different weighting
schemes on the models obtained after ELDA pruning. We
see that doing selection without any downweighting gives
the best performance. The primary reason is that the pruned
set still has a few bad detectors. Since these detectors make
uncorrelated mistakes, they are particularly attractive for
any approach focusing just on diversity. Thus, our results
suggest that focusing too much on diversity may hurt per-
formance. This observation agrees with [20], where the au-
thors show that just focusing on diversity is not useful when
building ensembles on real life data. Our criterion for selec-
tion maintains the diversity vs. performance balance.

5.2. Importance of taskbased information
In this experiment, we compare the appearance-based

ranking generated by sparse modeling to the ranking gen-
erated by our selection algorithm. We use sparse model-
ing [9] to get a pruned set of detectors, which are then
ranked. To rank the detectors, sparse modeling ranking
looks at the similarity in appearance space of the under-
lying exemplar images. Figure 5a shows that the ranking
provided by the sparse modeling performs poorly at the de-
tection task (the mAP of this baseline is always lower than
that of our method). Using our ranking, with just the first
20 detectors we are able to cover 56% of the ground truth
as opposed to 24% for sparse modeling.

Figure 5b shows two binary matrices between ground
truth boxes and detectors. A black dot at row i, column
j indicates that the detector j correctly detects ground truth
box i. When using our selection method, we cover more
ground truth detections within the first few detectors. Thus,
our selection method provides a better coverage of ground
truth with smaller number of models as opposed to the se-
lection based on sparse modeling.

5.3. Seeding the selection
We analyze greedily selecting seed models (greedy seed-

ing) (Section 4.2) by varying the number of models picked
as a starting point for the selection process. [3] suggests that
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Figure 4: Analysis of different weighting schemes for the
selection process. We see that selection without down-
weighting performs the best (see section 5.1 for discussion).

this may help improve performance by providing a good
search direction for the forward selection step. We try vary-
ing number of detectors used to seed our ensemble, and use
that as the starting point for our selection algorithm. In our
experiments, we found that such seeding harms the perfor-
mance. Greedy seeding does not take into account how the
ensemble behaves as a whole. While measuring detection
performance, it is also important to minimize redundant de-
tections which the greedy seeding does not account for. Fig-
ure 6 shows performance for varying values of initially cho-
sen seeds g. We see that the performance is better without
greedy seeding (g = 0) and worsens as we increase g.
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Figure 5: Comparison of appearance based ranking vs.
detection-performance based ranking. Using detection-
performance greatly improves the ranking, both in terms of
accuracy and coverage.
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Figure 6: Greedy seedings for our selection procedure. The
performance worsens as we increase the number of models
picked by greedy seeding. Our approach performs better
without any greedy seeding.

5.4. Pruning and Selection
Now we compare the output of our two stage pruning and

selection algorithms for different pruning selection combi-
nations. We consider both the pruning methods - sparse



modeling and ELDA clustering. We use our selection algo-
rithm on this pruned output. We also use the greedy rank-
ing [25] for selection as a baseline. We perform five-fold ex-
periments with different training and validation splits, and
report the standard error for the mAP values. The results are
shown in Figure 7. In these experiments, the minimum size
of pruning sets was 114 and 76 for the ELDA and sparse
modeling approaches respectively. We see that using our
selection method with the ELDA pruning gives the best re-
sults. This shows that it is both the pruning and the selection
step that help get the performance boost. In our selection al-
gorithm, we stop as soon as performance on the validation
set drops (indicated by red dots in Figure 7). We see that this
point (63 detectors) holds well even for the much larger un-
seen test distribution. This gives empirical evidence that our
pruning and selection methods do not overfit. Table 1 shows
the mAP values for all these methods as soon as the se-
lection terminates, i.e., validation error increases. k-means
gives better results than the sparse modeling baseline, but
requires an exhaustive search for the value of k.

It would be interesting to see how the pruning/selection
approach performs against the entire library of detectors. To
study this, we train and use all the 1684 ESVMs for detec-
tion without any pruning/selection. This uncovers a surpris-
ing and interesting result: it actually hurts performance if
we use the entire library of detectors (0.311 mAP with 1684
detectors as opposed to 0.632 mAP with 63 detectors). Even
after pruning, using the entire library without selection hurts
performance as seen in Figure 7 - the mAP value peaks and
then decreases as number of detectors increase. This result
underscores the importance of the problem being tackled in
this paper, and shows that the selection process is doubly
vital, i.e., for reducing computation complexity and for im-
proving performance.

6. Discussion
We proposed a data-driven approach for discriminative

and compact exemplar selection. The empirical results
show that the problem of ensemble selection for object de-
tectors has significant differences from the one for classi-
fiers. These key differences manifest in our choice for task-
based pruning, no seeding and no downweighting to min-
imize the ensemble error. It is interesting to see that our
ranked selection also discards bad classifiers, which helps
us to get better performance with fewer detectors on the
KITTI dataset.
Acknowledgement: This work was supported in part by
NSF Grant IIS1065336 and a Siebel Scholarship. The au-
thors wish to thank Francisco Vicente and Ricardo Cabral
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