Robotic Technology for USAR

Illah Nourbakhsh
16-899D Lecture Slides
Role of Robotics in USAR

- Lower latency of first entry
 - HAZMAT scheduling, preparation
 - Structural analysis and approval
- Lower very high human risk
 - Increase accessible domain
 - Broaden operating conditions (heat, lack of oxygen)
- Human sensing augmentation
 - Sensing: Infrared imaging, Environmental modeling
 - Force multiplier
Role of Robotics in USAR

- Lower latency of first entry
- Lower human risk
- Human sensing augmentation

Increase survival chance and outcome for victims, decrease risk exposure and hazards to first responders.
Barriers to Success

- Effective human-robot interaction
- USAR robot operating system standardization
- Mechatronic robot innovation
- Robot – sensor interfaces
- Systems-level field testing and validation
Barriers to Success

- Effective human-robot interaction
 Current interfaces: fragile, inefficient and need extensive training
 - Human factors analysis must be applied to USAR case
 - Iterative interaction design of interfaces
 - This investment has high payoff, imagine 1:6 human:robot

- USAR robot operating system standardization
- Mechatronic robot innovation
- Robot – sensor interfaces
- Systems-level field testing and validation
ROBOTS AT GROUND ZERO

Photos courtesy of University of South Florida

Illah Nourbakhsh
Barriers to Success

- Effective human-robot interaction
- USAR robot operating system standardization

 To maximize effectiveness across research efforts, we need standardized integrations of heterogeneous robot platforms.

 - Decouple physical robot structure, embedded processing and high-level interaction design
 - USAR O.S. will lower barrier to entry for industry and research partners

- Mechatronic robot innovation
- Robot – sensor interfaces
- Systems-level field testing and validation
Barriers to Success

- Effective human-robot interaction
- USAR robot operating system standardization
- Mechatronic robot innovation

 No single robot design serves all search & rescue needs.

 - Consider USAR robotics as a set of tools dynamically assembled based on real-time demands
 - Robustness and price point: essential to commercial viability

- Robot – sensor interfaces
- Systems-level field testing and validation
Barriers to Success

- Effective human-robot interaction
- USAR robot operating system standardization
- Mechatronic robot innovation
- Robot – sensor interfaces

 Retooling existing USAR sensors for robot use.

 - Human-readable sensors must be dual-use
 - Overcome mechanical, electronic and AI obstacles

- Systems-level field testing and validation

Illah Nourbakhsh
Barriers to Success

- Effective human-robot interaction
- USAR robot operating system standardization
- Mechatronic robot innovation
- Robot – sensor interfaces
- Systems-level field testing and validation

We must build foundational knowledge rather than individual engineered solutions.

- Design > Implementation > Testing > Evaluation > Refinement > Dissemination
- Instrumented test facilities, standards and evaluation methodologies are required

Illah Nourbakhsh
Illah Nourbakhsh

NIST Cooperative Test Facilities
USAR Test Arena Proliferation

FOSTERING COLLABORATION THROUGH STANDARDS

PREVIOUS COMPETITIONS

- AAAI Conference 2000
 AUSTIN, TEXAS, USA
- IJCAI/AAAI Conference 2001
 SEATTLE, WASHINGTON, USA
- RoboCupRescue 2002
 FUKUOKA, JAPAN
- AAAI Conference 2002
 EDMONTON, ALBERTA, CANADA
- American Open 2003
 PENNSYLVANIA, USA
- Japan Open 2003
 NIIGATA, JAPAN
- RoboCupRescue 2003
 PADUA, ITALY
- IJCAI/AAAI Conference 2003
 ACAPULCO, MEXICO

YEAR-ROUND ARENAS

- NIST
 MARYLAND, USA (2000)
- Museum of Emerging Science
 TOKYO, JAPAN (2002)
- Carnegie Mellon University
 PENNSYLVANIA, USA (2003)
- Istituto Superiore Antincendi
 ROME, ITALY (2003)
- University of New Orleans
 LOUISIANA, USA (2004)
- Bremen University
 BREMEN, GERMANY (2004)
- Portugal TBD
 LISBON, PORTUGAL (2004)

2004 COMPETITIONS

- American Open
- German Open
- Japan Open
- RoboCupRescue
 LISBON, PORTUGAL
- AAAI Conference
 CALIFORNIA, USA
Sensor Integration

- USF expertise in first responder sensor needs
- CMU expertise in embedded sensor interfacing electronics and software
- ARC expertise in local reasoning and interpretation
Sensor Integration

- USF expertise in first responder sensor needs
- CMU expertise in embedded sensor interfacing electronics and software
- ARC expertise in local reasoning and interpretation
Mechatronic Robot Innovation

- ARC robot control development
- CMU rapid prototyping facilities

Illah Nourbakhsh
Mechatronic Robot Innovation

- ARC robot control development
- CMU rapid prototyping facilities
Mechatronic Robot Innovation

- ARC robot control development
- CMU rapid prototyping facilities
Simulation and Training

- U. Pitt. / CMU Unreal simulation, chosen for broad dissemination as the NIST standard
- Sensor model characterization: only possible in most realistic possible environments: ARC
- Scorpion EarBot dynamic modeling and neural net – controlled V.O.R. research
Simulation and Training

- U. Pitt. / CMU Unreal simulation, chosen for broad dissemination as the NIST standard
- Sensor model characterization: only possible in most realistic possible environments: ARC
- Scorpion EarBot dynamic modeling and neural net – controlled V.O.R. research
Simulation and Training

- U. Pitt. / CMU Unreal simulation, chosen for broad dissemination as the NIST standard
- Sensor model characterization: only possible in most realistic possible environments: ARC
- Scorpion EarBot dynamic modeling and neural net – controlled V.O.R. research
Simulation and Training

- U. Pitt. / CMU Unreal simulation, chosen for broad dissemination as the NIST standard
- Sensor model characterization: only possible in most realistic possible environments: ARC
- Scorpion EarBot dynamic modeling and neural net – controlled V.O.R. research
Simulation and Training

- U. Pitt. / CMU Unreal simulation, chosen for broad dissemination as the NIST standard
- Sensor model characterization: only possible in most realistic possible environments: ARC
- Scorpion EarBot dynamic modeling and neural net – controlled V.O.R. research