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ABSTRACT
Motivation: Finding a small subset of most predictive genes
from microarray for disease prediction is a challenging pro-
blem. Support Vector Machines (SVMs) have been found
successful with a recursive procedure in selecting important
genes for cancer prediction. It is not well understood, howe-
ver, how much the success depends on the choice of the
specific classifier, and how much on the recursive procedure.
We answer this question by examining multiple classifers
(SVM, ridge regression and Rocchio) with feature selection
in recursive and non-recursive settings on three DNA micro-
array datasets (ALL-AML Leukemia data, Breast Cancer data
and GCM data).
Results: We found recursive ridge regression most effective.
On the AML-ALL dataset, it achieved zero error rate on the
test set using only 3 genes (selected from over 7000), which
is more encouraging than the best published result (zero error
rate using 8 genes by recursive SVM). On the Breast Cancer
dataset and the two largest categories of the GCM data-
set, the results achieved by recursive ridge regression are
also very encouraging. A further analysis of the experimental
results shows that different classifiers penalize redundant fea-
tures to different extent and this property plays an important
role in the recursive feature selection process. Ridge regres-
sion classifier tends to penalize redundant features to a much
larger extent than the SVM does. This may be the reason
that recursive ridge regression has a better performance in
selecting genes.
Availability: The data sets are available in
http://sdmc.lit.org.sg:8080/GEDatasets/Datasets.html.
Contact: hustlf@cs.cmu.edu

INTRODUCTION
Gene micro-array data has provided the opportunity to mea-
sure the expression level of thousands of genes simulta-
neously and this kind of high throughput data has a wide
application in bioinformatics research. In DNA micro-array
data analysis, for example, biologists measure the expres-
sion levels of genes (thousands of them) in the tissue samples
from patients, and seek explanations about how the genes of
patients relate to the types of cancers they had. Many genes

could be strongly correlated to a particular type of cancer;
however, biologists prefer to focus on a small subset of genes
which dominates the outcomes before conducting in-depth
analysis and expensive experiments with a larger set of genes.
Automated discovery of this small subset (feature selection),
therefore, is highly desirable.

Methods for automated feature selection can be roughly
divided into two categories: filtering approaches, meaning
that feature selection is done in a preprocessing step of clas-
sification, independent from the choice of the classification
method and wrapper approaches, meaning that a classifier is
used to generate scores for features in the selection process
and feature selection depends on the choice of the classifier.
A recent overall analysis of feature selection approaches can
be found in Guyon et al. (2003).

Both types of approaches have been applied to the extrac-
tion of gene subsets from DNA micro-array data. Filtering
methods like correlation coefficient ranking (Golubet al.
(1999)) are obviously not the best choices because they score
the importance of features independently, ignoring the cor-
relations among them. More complex filtering methods like
Markov Blanket filtering (Xinget al. (2001)) has also been
tried. However it has not achieved the level of the best results
of wrapper approaches (Guyon et al. (2000); Weston et al.
(2001)) (we will compare the detailed results later). As a spe-
cific wrapper approach, recursive feature elimination using
SVM (SVM-RFE) has been found very successful. On the
AML-ALL benchmark collection (introduced in the next sec-
tion), for example, the best result ever published was by
recursive SVM, with an error rate of zero when selecting 8
genes from thousands in the original feature space (Guyon et
al. (2000)).

Rakotomamonjy (2003) has investigated the feature selec-
tion problem using various SVM-based criteria. His work
can be seen as a generalization of the SVM-RFE algo-
rithm. Weston et al. (2003) discussed the influence of norm-
2, norm-1 and norm zero regularizers in feature selection.
However, neither of them explored the influence of the choice
of the classifier in the recursive feature selection process.

While the above research findings provide useful insights,
deeper understanding and analysis are needed. We would like
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to know, for instance, how much does the success of SVM in
recursive feature selection on the micro-array dataset come
from the recursive process, and how much does it depend
on the choice of the classifier? And, more generally, what
property of a classifier would make it successful in recur-
sive feature selection? Presenting such a study is the main
contribution of this paper.

In the System and Methods section, we report our fea-
ture selection experiments with SVM, ridge regression and
a Rocchio-style classifier on three micro-array datasets (the
AML-ALL micro-array dataset, the Breast Cancer dataset
and the GCM dataset). In the Algorithm Analysis section ,
we analyze the effect of redundant features in the process
of recursive feature selection and compare the differences
among the classifiers with respect to their extent to penalize
redundant features. We also provide analysis on the classi-
fication models with respect to feature selection. The last
section concludes the main findings.

SYSTEM AND METHODS
We conducted a set of experiments for wrapper-style fea-
ture selection with three classifiers, in both recursive and
non-recursive ways. The three classifiers are Rocchio, SVM
and Ridge Regression (RR). More specifically we choose to
examine the linear version of those classification methods,
since linear classifiers are relatively simple, easy to interpret,
and can be enriched through the use of kernel functions for
solving non-linear problems. Details about these classifiers
can be found in a previous paper (Li et al. (2003)).

Algorithm 1 . Recursive Wrapper for Feature Selection
1. Let m be the initial number of features and t be the

number of features we want to get.

2. While (m ≥ t)
a. Train the classifier and get feature weights wi

b. Delete the feature with the smallest weight in absolute
value and set m ← m − 1. (In fact, more than one
feature can be deleted in each iteration. In this paper,
we delete m

2 features when m >= 8 and delete only
one feature when m becomes less than eight.)

The recursive wrapper procedure (the training part) is
shown in algorithm 1. By non-recursive wrapper approach,
we mean that we stop the above procedure after the first ite-
ration and select the t top-ranking features based on their
weights in absolute value.

Empirical Findings on a AML-ALL Micro-array
Dataset
The first data set is named AML-ALL (Fodor et al. (1997)),
consisting of a matrix of DNA micro-array data. The rows

of the matrix are genes, the columns are cancerous patients
having one of the two different types of leukemia , AML or
ALL, and the elements of the matrix are the gene expression
levels in the corresponding patients. There are a total of 7129
genes (features) and 72 patients (examples), split into a trai-
ning set of 38 examples (27 belong to ALL and 11 belong to
AML), and a test set of 34 examples (20 belong to ALL and
14 belong to AML). The classification task is to predict the
disease type (ALL or AML) for an arbitrary patient, given the
gene expression levels in the tissue sample from that patient.
Different feature selection methods have been evaluated on
this dataset, including the markov blanket algorithm (Xinget
al. (2001)) and SVM based feature selection (Weston et al.
(2001); Guyon et al. (2000)); the best result so far (zero error
rate) was obtained by recursive SVM, using 8 features only
(Guyon et al. (2000)).
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Fig. 1. Performance of three classifiers on AML-ALL dataset:
with recursive(upper graph) and non-recursive(lower graph) feature
selection

We conducted experiments using the three classifiers on the
AML-ALL dataset. We use cross-validation on training data
to tune regularization parameter λ (readers are referred to Li
et al. (2003) for details) in each classifier. In the feature eli-
mination process, the value of parameter λ will not change.
Figure 1 shows the classification results on the test data.

We can see that when we use all the 7129 genes as fea-
tures, all the three classifiers can predict diseases very well
(SVM and ridge regression with zero error rate and Rocchio
with very low error rate). However, when we want to find
a small subset of genes to predict the disease, the choice of
Recursive ridge regression is the best in the sense of using the
minimum number of features to obtain the lowest error rate in
the classification. It is quite impressive that only three genes
(selected from over 7,000) were needed for this classifier to
achieve the error rate of zero, outperforming the best result
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Fig. 2. Performance of three classifiers on Breast Cancer dataset:
with recursive(upper graph) and non-recursive(lower graph) feature
selection

for recursive SVM ever reported on the same data. Recur-
sive SVM has a worse performance, achieving zero error rate
with 8 genes. Rocchio 1 has the worst performance when only
using a small set of genes. We can also see that recursive pro-
cess did help ridge regression and SVM to increase the gene
selection performance a lot with small number of features.

The three genes found by recursive ridge regression are
M27891, X51521 and Y00787. Notice that M27891 and
Y00787 belong to the 50 genes Golubet al. (1999) has iden-
tified (which have prediction powers) while X51521 was not
reported in Golubet al. (1999).

We also merged the training and the test set to get a leave
one out cross-validation result using the three classifiers.
With three genes, recursive ridge regression gets a leave one
out cross-validation error rate of 0.0417 while recursive SVM
gets 0.0833 and Rocchio gets 0.2917. This is consistent with
the above results on the test set only.

Empirical Findings on a Breast cancer Dataset
The second microarray dataset is a more difficult one, which
comes from Van’t Veer et al. (2002). The training data con-
tains 78 patient samples, 34 of which are from patients who
had developed distant metastases within 5 years (labeled as
”relapse”), the rest 44 samples are from patients who remai-
ned healthy from the disease after their initial diagnosis for
interval of at least 5 years (labeled as ”non-relapse”). Corre-
spondingly, there are 12 relapse and 7 non-relapse samples in
the testing data set. The total number of genes is 24481. Van’t
Veer et al. (2002) has extracted 70 genes which can correctly

1 The recursive and non-recursive version for Rocchio classifiers are exactly
the same, which would be mentioned in the following sections

predict the outcome in 17 of the 19 patients in the test set
(thus the error rate is 0.1053).

We conducted experiments using the above three classifiers
on this Breast cancer dataset. The regularization parameter λ

is tuned in the same way described above. Results on the test
set are shown in figure 2. We can see that recursive Ridge
regression achieved the error rate of 0.1053 with only 8 genes
while Van’t Veer et al. (2002) get the same error rate using
70 genes. On the other hand, recursive SVM could not find a
small set of genes to achieve this classification accuracy.

Empirical Findings on the two largest categories of
GCM data
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Fig. 3. Performance of three classifiers on Leukemia category of
GCM dataset: with recursive(upper graph) and non-recursive(lower
graph) feature selection

The third microarray dataset (named GCM data in Ramas-
wamy et al. (2001)), spanning 14 different tumor classes, was
obtained from NCI and many other institutes. The training
data contains 144 patient samples and the test data contains
54 patient samples. The total number of genes is 16063.

Since this dataset contains 14 categories while the fea-
ture selection methods introduced in this paper only focus
on binary classification problems, we use one vs. all strategy
to do feature selection for each category separately. Due to
the space limitation, we only focus on the two largest catego-
ries (Lymphoma and Leukemia) in this paper. In the training
data, Lymphoma category contains 16 samples and Leukemia
category contains 24 samples. In the test data, Lymphoma
category contains 6 samples and Leukemia category contains
6 samples.

We conducted experiments using the three classifiers for
Lymphoma category and Leukemia category respectively.
The regularization parameter λ is tuned in the same way des-
cribed above. Results on the test set are shown in figure 4 and
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Fig. 4. Performance of three classifiers on Lymphoma category of
GCM dataset: with recursive(upper graph) and non-recursive(lower
graph) feature selection

3. We can see that recursive Ridge regression achieved bet-
ter performance than recursive SVM with small number of
features.

ALGORITHM ANALYSIS
Analysis of the recursive feature elimination
procedure
Our experiment implies that, given a small subset of genes,
most other relevant genes are redundant in the sense of pre-
dicting disease. In order to find this small subset, a classifier
should be able to select features that are both relevant and
NOT redundant. All the three classifiers we discussed in the
paper tend to assign high coefficients (thus high ranks) to
most relevant features. However, they have very different
strategy to penalize redundant features, which lead to their
very different gene selection performance.

To visualize the differences among the three classifiers in
selecting features, we show the correlation matrix for the top
50 genes selected by each classifier on the AML-ALL dataset
(in figure 5). 2

In each matrix, the features are sorted according to their
ranks assigned by the classifiers (feature with rank=1 is the
most important feature). The (i, j) element of the matrix
is the absolute value of the correlation coefficient between
the ith feature vector and the jth feature vector in the trai-
ning data; The color intensity in those graphs reflects the
magnitude of gene-gene correlation coefficients: the brigh-
ter the color, the stronger the correlation for either positively
or negatively correlated genes.

2 The correlation matrices constructed from Breast Cancer data and GCM
data also show similar patterns.
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Fig. 5. The correlation matrix of three different classifiers on
ALLAML dataset. The recursive and non-recursive version of Roc-
chio classifier are exactly the same, thus we only plot one matrix for
Rocchio.

• First, we can observe the extent to which different clas-
sifiers penalize redundant features intuitively from these
correlation matrices. For Rocchio classifier, the bright
pixels are clustered in the upper-left corner of the matrix.
This implies that the highest ranked genes for Rocchio
classifiers are very similar to each other and contain
much redundant information. On the other hand, for
ridge regression classifier, the bright pixels are much
more evenly distributed 3, which implies that the hig-
hest ranked genes for ridge regression classifier contain
much less redundant information. We can also see that
the extent to which SVM penalizes redundant features is
between Rocchio and ridge regression classifier. Recall
that ridge regression classifier has the best gene selection
performance, followed by SVM and then by Rocchio.
This fact suggests that how classifiers penalize redun-
dant features is closely related to the success of their
gene selection strategy.

• Second, we can identify the role of recursive process
by comparing correlation matrices in recursive and
non-recursive versions. For clarity, we first give a sim-
ple example here. Let’s assume there are three genes
(A,B,C) which are relevant to the disease. Among them,
gene B and C are similar to each other and contain red-
undant information. Then a classifier that will penalize
redundant features would assign relatively lower coef-
ficients to gene B and C because of their redundancy.
If we use a non-recursive version of the classifier, both

3 In fact we can see less bright pixels because we only show the top fifty
features. If we show all the 7129 features, then the number of bright pixels
would be the same for all the classifiers
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gene B and C may be deleted due to their relatively
low coefficients (thus low ranks). Then the information
they contain may be lost and the classification perfor-
mance suffers. On the other hand, if we use a recursive
version of the classifier, the coefficients of the clas-
sifier are continuously being re-trained while features
are deleted one by one. Let’s suppose gene C is dele-
ted before gene B. Then without gene C, gene B is no
longer redundant and its rank will be improved. Ide-
ally, the recursive classifier would finally keep gene A
and B as its top ranked features. This is the principle
that the recursive procedure works. From the graphs, we
can see that in the recursive version, the bright pixels
tend to evenly distribute. This is a result that the clas-
sifiers have deleted part of the genes with redundant
information and keep the left ones (which are no longer
redundant). Our experiments show that when the number
of features is large, the performance of recursive classi-
fiers and non-recursive classifiers is similar. When the
number of features becomes very small (less than ten),
recursive classifiers (especially ridge regression classi-
fier) often achieve better performance than non-recursive
classifiers.

Generally speaking, for the recursive feature selection to
succeed, eliminated features at certain point in the process
must have some influence on the re-adjusted weights of the
remaining features, and the influence, desirably, should pena-
lize redundant features and promote non-redundant ones.
The influence depends on the choice of the classifier since
different classifiers have different penalization strategies to
redundant features: some are better than others in this aspect.
In the next subsection, we analyze the penalization property
of Rocchio, ridge regression and SVM in detail.

Analysis of Rocchio
The following notations will be used in the rest of
this paper: The training data consists of n pairs of
(~x1, y1), (~x2, y2), . . . , (~xn, yn), where ~xi = (xi1, . . . , xim)
represents the values of the m input features in the ith trai-
ning example, and yi ∈ {−1, 1} is the class label. We use
vector ~β = (β1, . . . , βm) to represent the parameters of the
linear classifier. n+ and n− are used to represent the number
of positive and negative training examples respectively.

Rocchio-style classifiers are commonly used for their sim-
plicity, efficiency and reasonable performance (Li et al.
(2003)). A prototype vector is constructed for each class in
the form ~β = ~u − b~v where ~u and ~v are the centroids of
positive and negative training examples respectively, and b

is the weight of the negative centroid relative to the positive
centroid. By centroid we mean the vector average of training
examples. The weight of the pth feature can be computed as

βp =
1

n+

∑

yi=1

yixip +
b

n−

∑

yi=−1

yixip
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Fig. 6. The left graph shows the loss function of modified logistic
regression (with different t values) and SVM, without the regula-
rization part. We can see that when t gets larger, the loss function
of modified LR would converge to SVM. The right graph shows the
transformed sigmoid function sig(t(yi

~β~xi−1)) for t = 3 and three
tangent lines. The ait values are about 0, 0.75, 0 and bi values are
about 0, 0.5 1 for these three lines

Obviously, the weight of each feature is independent from
each other and remains constant during the recursive process.
In other words, Rocchio does not give any penalization to
redundant features, thus the recursive feature selection pro-
cedure can not work at all(its recursive and non-recursive
procedure are exactly the same). This may explain the bad
performance of Rocchio in gene selection – genes with
redundant information dominate its highest ranked features.

Analysis of Ridge Regression
Term weights in ridge regression are determined by the
minimization of its loss function, defined as:

LRR =

n∑

i=1

(1− yi
~β~xi)

2 + λ‖~β‖2

=

n∑

i=1

(1− yi

m∑

p=1

xipβp)
2 + λ

m∑

p=1

β2
p

To minimize LRR we need to set its partial derivative with
respect to each term weight (βq) to zero, which yields:

n∑

i=1

xiqyi(1− yi

m∑

p=1

xipβp) = λβq (1)

Thus

βq =

∑n

i=1 xiqyi −
∑m

p=1

∑n

i=1 xiqxipβp

λ
(2)

Now focusing on the second term in the numerator of the
above formula. Notice that

∑n

i=1 xiqxip is the dot-product of
two ”feature vectors”, reflecting the similarity between featu-
res p and q in the n training examples, which can be replaced
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by token sim(p, q), and that
∑n

i=1 xiqxipβp = sim(p, q)βp

reflects how much the correlation and the weight of feature p

jointly deduct the weight of feature q. To be clearer, we can
write the above formula as

βq =

∑n

i=1 xiqyi −
∑m

p=1 sim(p, q)βp

λ

Clearly, without the second term in the numerator of the for-
mula for βq , ridge regression is very similar to Rocchio; with
the second term, however, the redundant features would be
penalized and elimination of features during the recursive
process has the effect of boosting the remaining features that
are correlated to the eliminated ones. In other words, the
iterative process has the effect of boosting the weights for
relatively non-redundant features in the remaining set.

Analysis of SVM
Although SVM has been widely used, not much work has
been reported for explicit analysis of how SVM penalizes
redundant features. The loss function of SVM (Vapnik et al.
(1995)) has the form of

Lsvm =
n∑

i=1

(1− yi
~β~xi)+ + λ‖~β‖2

This formula appears to be similar to the loss function of
ridge regression except that the first term on the right hand
side is not differentiable. This makes it hard to directly apply
the same kind analysis to SVM as we did for ridge regres-
sion. Here, we used a modified logistic regression to simulate
SVM. The loss function of the modified logistic regression
(LR) is

Llog =

n∑

i=1

1

t
ln(1 + exp(t(1− yi

~β~xi))) + λ‖~β‖2

Zhang et al. (2003) has shown that when t gets large enough,
the solution of modified LR will converge to the solution of
SVM. In other words, when t is large enough, the modified
LR ranks features in the same way SVM does. The left graph
of figure 6 intuitively shows that the loss function of modified
LR will converge to the loss function of SVM when t gets
large.

To minimize Llog we need to set its partial derivative with
respect to each term weight (βq) to zero, which yields:

n∑

i=1

xiqyi(1−
1

1 + exp(t(1− yi
~β~xi))

) = 2λβq

We use the sigmoid function sig(z) = 1
1+exp(−z) to simplify

above formula and get
n∑

i=1

xiqyi(1− sig(t(yi

m∑

p=1

xipβp − 1))) = 2λβq (3)

The sigmoid function is non-linear and this makes it difficult
for us to analyze formula 3 as we analyze formula 1. Thus we

use multiple tangent lines to simulate the sigmoid function.
In particular, we use sig(z) = azz + bz to replace sig(z) =

1
1+exp(−z) where az = dsig(z)

dz
and bz = sig(z)− azz. Thus

sig(t(yi
~β~xi − 1)) can be re-written as aityi

~β~xi − ait + bi.
Here ai and bi are functions of t(yi

~β~xi − 1). It’s easy to see
when the value of yi

~β~xi (this term is often called the margin
value of ~xi and it reflects the goodness that ~xi is classified )
varies from−∞ to∞, ai would vary from 0 to 0.25 and then
back to 0 while bi would vary from 0 to 1. The right graph
of figure 6 shows the sigmoid function sig(t(yi

~β~xi−1)) and
three tangent lines.

Now we re-write formula 3 as

n∑

i=1

xiqyi(1− aityi

m∑

p=1

xipβp + ait− bi) = 2λβq

Finally we get

βq =

∑n

i=1(ait + 1− bi)xiqyi −
∑m

p=1

∑n

i=1(ait)xiqxipβp

2λ
(4)

We can see formula 4 has the same form as formula 2.
The first term (relevancy term) in the numerator measures the
extent that feature q is relevant and the second term (redun-
dancy penalization term) measures the extent that feature q
is redundant. However, unlike the strategy used in formula 2,
formula 4 assigns weight ait + 1 − bi to the relevancy term
and weight ait to the redundancy penalization term for each
sample i. Notice that 1− bi > 0 always holds, which means
the weight for the relevancy term is always larger than the
weight for the redundancy penalization term. More specially,
suppose t is large enough, then

1. For samples whose margin values yi~xiβ are obviously
less than one, ait and bi will be close to zero 4, which
means the redundancy penalization term almost vanis-
hes while the relevancy term still holds (its weight will
be close to one). Thus modified LR mainly models the
relevancy of features and almost ignores the redundancy
among features in these samples. This strategy is similar
to Rocchio.

2. For samples whose margin values yi~xiβ become close to
one, ait will become larger, thus the redundancy penali-
zation term will play a role. In fact, when yi~xiβ is equal
to one, ait will take its largest value 0.25t while bi will
be equal to 0.5. The redundancy penalization term has
the largest influence in this point. For these samples,
both the relevancy and redundancy of features are mode-
led and modified LR will penalize redundant features in
a way similar to ridge regression.

3. For samples whose margin values yi~xiβ become
obviously larger than one, ait will again become close

4 This is easy to see from the fact ait = t
exp(t(1−yi~xi

~β))

(1+exp(t(1−yi~xi
~β)))2
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to zero while bi will become close to one. It’s easy to
see the weights for the relevancy term and the redun-
dancy penalization term will both be close to zero. In
other words, modified LR tends to ignore these samples.

From above analysis, we can see modified LR penali-
zes redundant features in a way between Rocchio and ridge
regression. Notice when t is large enough, modified LR will
rank features in the same way SVM will do. Thus the above
analysis is also suitable for SVM. In fact, SVM only models
the redundancy among features for the samples exactly on
the margin (yi~xi

~β = 1). The feature redundancy informa-
tion in other samples (with larger or smaller yi~xi

~β values),
which may be very valuable, is totally ignored. This may
lead to unsatisfied performance when SVM is used for feature
selection.

DISCUSSIONS
In this paper, we addressed a key question for wrapper-style
feature selection: what property of a classifier would lead
to the success of recursive feature elimination? By analy-
zing three different classifiers, we find that the ability of a
classifier for penalizing redundant features in the recursive
process has a strong influence on its success. Ridge regres-
sion, having an explicit penalty of correlated features in its
loss function minimization, is a good choice for recursive
feature selection, and shows best performance in our expe-
riments. SVM is not as effective as ridge regression in terms
of finding non-redundant features in the recursive gene selec-
tion process. Part of the reason may be that it only penalizes
redundant features for samples exactly on the margin. Roc-
chio will not penalize redundant features at all. This property
makes its recursive process not effective, i.e., not different
from using a non-recursive approach.
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