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1 Department of Computer Science University of Massachusetts, Amherst,
micah@cs.umass.edu

2 Heinz Nixdorf Institute and Department of Mathematics and Computer Science, Paderborn
University, Germany, {harry,csohler}@upb.de

3 Max-Planck-Institut für Informatik, Saarbrücken, Germany,
{ns,voecking}@mpi-sb.mpg.de

Abstract. We analyze a randomized pursuit-evasion game on graphs. This game
is played by two players, a hunter and a rabbit. Let G be any connected, undi-
rected graph with n nodes. The game is played in rounds and in each round both
the hunter and the rabbit are located at a node of the graph. Between rounds both
the hunter and the rabbit can stay at the current node or move to another node.
The hunter is assumed to be restricted to the graph G: in every round, the hunter
can move using at most one edge. For the rabbit we investigate two models: in
one model the rabbit is restricted to the same graph as the hunter, and in the other
model the rabbit is unrestricted, i.e., it can jump to an arbitrary node in every
round.
We say that the rabbit is caught as soon as hunter and rabbit are located at the
same node in a round. The goal of the hunter is to catch the rabbit in as few
rounds as possible, whereas the rabbit aims to maximize the number of rounds
until it is caught. Given a randomized hunter strategy for G, the escape length
for that strategy is the worst case expected number of rounds it takes the hunter
to catch the rabbit, where the worst case is with regards to all (possibly random-
ized) rabbit strategies. Our main result is a hunter strategy for general graphs with
an escape length of only O(n log(diam(G))) against restricted as well as unre-
stricted rabbits. This bound is close to optimal since Ω(n) is a trivial lower bound
on the escape length in both models. Furthermore, we prove that our upper bound
is optimal up to constant factors against unrestricted rabbits.

1 Introduction

In this paper we introduce a pursuit evasion game called the Hunter vs. Rabbit game. In
this round-based game, a pursuer (the hunter) tries to catch an evader (the rabbit) while
they both travel from vertex to vertex of a connected, undirected graph G. The hunter
catches the rabbit when in some round the hunter and the rabbit are both located on the
same vertex of the graph. We assume that both players know the graph in advance but
they cannot see each other until the rabbit gets caught. Both players may use a random-
ized (also called mixed) strategy, where each player has a secure source of randomness
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which cannot be observed by the other player. In this setting we study upper bounds
(i.e., good hunter strategies) as well as lower bounds (i.e., good rabbit strategies) on the
expected number of rounds until the hunter catches the rabbit.

The problem we address is motivated by the question of how long it takes a single
pursuer to find an evader on a given graph that, for example, corresponds to a computer
network or to a map of a terrain in which the evader is hiding. A natural assumption is
that both the pursuer and the evader have to follow the edges of the graph. In some cases
however it might be that the evader has more advanced possibilities than the pursuer in
the terrain where he is hiding. Therefore we additionally consider a stronger adversarial
model in which the evader is allowed to jump arbitrarily between vertices of the graph.
Such a jump between vertices corresponds to a short-cut between two places which is
only known to the evader (like a rabbit using rabbit holes). Obviously, a strategy that is
efficient against an evader that can jump is efficient as well against an evader who may
only move along the edges of the graph.

One approach to use for a hunter strategy would be to perform a random walk on the
graph G. Unfortunately, the hitting time of a random walk can be as large as Ω(n3) with
n denoting the number of nodes. Thus it would require at least Ω(n3) rounds to find
a rabbit even if the rabbit does not move at all. We show that one can do significantly
better. In particular, we prove that for any graph G with n vertices there is a hunter
strategy such that the expected number of rounds until a rabbit that is not necessarily
restricted to the graph is caught is O(n log n) rounds. Furthermore we show that this
result cannot be improved in general as there is a graph with n nodes and an unrestricted
rabbit strategy such that the expected number of rounds required to catch this rabbit is
Ω(n log n) for any hunter strategy.

1.1 Preliminaries

Definition of the game. In this section we introduce the basic notations and definitions
used in the remainder of the paper. The Hunter vs. Rabbit game is a round-based game
that is played on an undirected connected graph G = (V,E) without self loops and
multiple edges. In this game there are two players - the hunter and the rabbit - moving
on the vertices of G. The hunter tries to catch the rabbit, i.e., he tries to move to the
same vertex as the rabbit, and the rabbit tries not to be caught.

During the game both players cannot “see” each other, i.e., a player has no infor-
mation about the movement decisions made by his opponent and thus does not know
his position in the graph. The only interaction between both players occurs when the
game ends because the hunter and the rabbit move to the same vertex in G and the
rabbit is caught. Therefore the movement decisions of both players do not depend on
each other. We want to find good strategies for both hunter and rabbit. We say that a
hunter strategy has expected (worst case) escape length k, if for any rabbit strategy the
expected number of rounds until the hunter catches the rabbit is k. Analogously a rabbit
strategy is said to have expected (worst case) escape length k, if for any hunter strategy
the expected number of rounds until the rabbit is caught is k. We can define a strategy
for a player in the following way.

Definition 1. A pure strategy for a player in the Hunter vs. Rabbit game on a graph
G = (V,E) is a sequence S = S0,S1,S2, . . ., where St ∈ V denotes the position of



the player in round t ∈ �
0 of the game. A mixed strategy or strategy S for a player is a

probability distribution over the set of pure strategies.

Note that both players may use mixed strategies, i.e., we assume that they both have a
source of random bits for randomizing their movements on the graph.

As mentioned in the previous section we assume that the hunter cannot change
his position arbitrarily between two consecutive rounds but has to follow the edges of
G. To model this we call a pure strategy S restricted (to G) if either (St,St+1) ∈
E or St = St+1 holds for any t ∈ �

0. A (mixed) strategy is called restricted if it
is a probability distribution over the set of restricted pure strategies. For the analysis
we will consider only restricted strategies for the hunter and both restricted as well as
unrestricted strategies for the rabbit.

Notice that in our definition, the hunter may start his walk on the graph at an arbi-
trary vertex. However, we want to point out that defining a fixed starting position for
the hunter would not asymptotically effect the results of the paper.

1.2 Previous Work

A first study of the Hunter vs. Rabbit game can be found in [1]. The presented hunter
strategy is based on a random walk on the graph and it is shown that the hunter catches
an unrestricted rabbit within O(nm2) rounds, where n and m denote the number of
nodes and edges, respectively. In fact, the authors place some additional restrictions
on the space requirements for the hunter strategy, which is an aspect that we do not
consider in this paper.

In the area of mobile ad-hoc networks related models are used to design commu-
nication protocols (see e.g. [2, 3]). In this scenario, some mobile users (the “hunters”)
aid in transmitting messages to the receivers (the “rabbits”). The expected number of
rounds needed to catch the rabbit in our model corresponds directly to the expected time
needed to deliver a message. We improve the deliver time of known protocols, which
are based on random walks.

Deterministic pursuit-evasion games in graphs are well-studied. In the early work
by Parsons [14, 15] the graph was considered to be a system of tunnels in which the
fugitive is hiding. Parsons introduced the concept of the search number of a graph which
is, informally speaking, the minimum number of guards needed to capture a fugitive
who can move with arbitrary speed. LaPaugh [9] showed that there is always a search
strategy (a sequence of placing, removing, or moving a pebble along an edge) such that
no edge that is cleared at a point of time can be recontaminated again, i.e., if the fugitive
is known not to be in edge e then there is no chance for him to enter edge e again in the
remainder of the search. Meggido et al. [11] proved that the computation of the search
number of a graph is an NP -hard problem which implies its NP -completeness because
of LaPaugh’s result.

If an edge can be cleared without moving along it, but it suffices to ’look into’ an
edge from a vertex, then the minimum number of guards needed to catch the fugitive is
called the node search number of a graph [8].

Pursuit evasion problems in the plane were introduced by Suzuki and Yamashita
[16]. They gave necessary and sufficient condition for a simple polygon to be searchable



by a single pursuer. Later Guibas et al. [6] presented a complete algorithm and showed
that the problem of determining the minimal number of pursuers needed to clear a
polygonal region with holes is NP -hard. Recently, Park et al. [13] gave 3 necessary and
sufficient conditions for a polygon to be searchable and showed that there is an O(n2)
time algorithm for constructing a search path for an n-sided polygon.

Efrat et al. [4] gave a polynomial time algorithm for the problem of clearing a simple
polygon with a chain of k pursuers when the first and last pursuer have to move on the
boundary of the polygon.

1.3 New Results

We present a hunter strategy for general networks that improves significantly on the
results obtained by using random walks. Let G = (V,E) denote a connected graph
with n vertices and diameter diam(G). Recall that Ω(n) is a trivial lower bound on the
escape length against restricted as well as against unrestricted rabbit strategies on every
graph with n vertices. Our hunter strategy achieves escape length close to this lower
bound. In particular, we present a hunter strategy that has an expected escape length
of only O(n log(diam(G))) against any unrestricted rabbit strategy. Clearly, an upper
bound on the escape length against unrestricted rabbit strategies implies the same upper
bound against restricted strategies.

Our general hunter strategy is based on a hunter strategy for cycles which is then
simulated on general graphs. In fact, the most interesting and original parts of our anal-
ysis deal with hunter strategies for cycles. Observe that if hunter and rabbit are re-
stricted to a cycle, then there is a simple, efficient hunter strategy with escape length
O(n). (In every nth round, the hunter chooses a direction at random, either clock-
wise or counterclockwise, and then it follows the cycle in this direction for the next n
rounds.) Against unrestricted rabbits, however, the problem of devising efficient hunter
strategies becomes much more challenging. (For example, for the hunter strategy given
above, there is a simple rabbit strategy that results in an escape length of Θ(n

√
n).)

For unrestricted rabbits on cycles of length n, we present a hunter strategy with escape
length O(n log n). Furthermore, we prove that this result is optimal by devising an un-
restricted rabbit strategy with escape length Ω(n log n) against any hunter strategy on
the cycle.

Generalizing the lower bound for cycles, we can show that our general hunter strat-
egy is optimal in the sense that for any positive integers n, d with d < n there exists
a graph G with n nodes and diameter d such that any hunter strategy on G has escape
length Ω(n · log(diam(G))). This gives rise to the question whether n · log(diam(G))
is a universal lower bound on the escape length in any graph. We can answer this ques-
tion negatively. In fact, in a full version of this paper, we present a hunter strategy with
escape length O(n) for complete binary trees against unrestricted rabbits.

Finally, we investigate the Hunter vs. Rabbit game on strongly connected directed
graphs. We show that there exists a directed graph for which every hunter needs Ω(n2)
rounds to catch a restricted rabbit. Furthermore, for every strongly connected directed
graph, there is a hunter strategy with escape length O(n2) against unrestricted rabbits.
Due to space limitations, the analyses for directed graphs as well has to be moved to
the full version.



1.4 Basic Concepts

The strategies will be analyzed in phases. A phase consists of m consecutive rounds,
where m will be defined depending on the context. Suppose that we are given an m-
round hunter strategy H and an m-round rabbit strategy R for a phase. We want to
determine the probability that the rabbit is caught during the phase. Therefore we in-
troduce the indicator random variables hit(t), 0 ≤ t < m for the event Ht = Rt that
the pure hunter strategy H and the pure rabbit strategy R chosen according to H and
R, respectively, meet in round t of the phase. Furthermore, we define indicator random
variables fhit(t), 0 ≤ t < n describing first hits, i.e., fhit(t) = 1 iff hit(t) = 1 and
hit(t′) = 0 for every t′ ∈ {0, . . . , t − 1}. Finally we define hits =

∑m−1
t=0 hit(t).

The goal of our analysis is to derive upper and lower bounds for Pr[hits ≥ 1],
the probability that the rabbit is caught in the phase. To analyze the quality of an m-
round hunter strategy we fix a pure rabbit strategy R and derive a lower bound on the
probability Pr[hits ≥ 1]. Similarly to analyze the quality of an m-round rabbit strategy
we fix a pure hunter strategy and derive an upper bound on Pr[hits ≥ 1]. Then we
apply Yao’s min-max principle [12] to derive the bounds for the mixed strategies.

The following two non-standard but fundamental propositions are important tools
in the analysis of the upper and lower bounds.

Proposition 1. Let R be an m-round rabbit strategy and let H be a pure m-round
hunter strategy. Then

Pr [hits ≥ 1] =
E [hits]

E [hits | hits ≥ 1]
.

Proposition 2. Let H be an m-round hunter strategy and let R be a pure m-round
rabbit strategy. Then

Pr [hits ≥ 1] ≥ E [hits]
2

E
[

hits2
] .

The proofs of these propositions are interesting exercises.

2 Efficient hunter strategies

In this section we prove that for a graph G with n nodes and diameter diam(G), there
exists a hunter strategy with expected escape length O(n · log(diam(G))). For this
general strategy we cover G with a set of small cycles and then use a subroutine for
searching these cycles. We first describe this subroutine: an efficient hunter strategy for
catching the rabbit on a cycle. The general strategy is described in section 2.2.

2.1 Strategies for cycles and circles

We prove that there is an O(n)-round hunter strategy on an n-node cycle that has a
probability of catching the rabbit of at least 1

2Hn+1 = Ω( 1
log(n) ), where Hn is the nth

harmonic number which is defined as
∑n

i=1
1
i . Notice that by repeating this strategy



until the rabbit is caught we get a hunter strategy with an expected escape length of
O(n · log(n)). In order to keep the description of the strategy as simple as possible, we
introduce a continuous version of the Hunter vs. Rabbit game for cycles. In this version
the hunter tries to catch the rabbit on the boundary of a circle with circumference n.
The rules are as follows. In every round the hunter and the rabbit reside at arbitrary,
i.e., continuously chosen points on the boundary of the circle. The rabbit is allowed to
jump, i.e., it can change its position arbitrarily between two consecutive rounds whereas
the hunter can cover at most a distance of one. For the notion of catching, we partition
the boundary of the circle into n distinct half open intervals of length one. The hunter
catches the rabbit if and only if there is a round in which both the hunter and the rabbit
reside in the same interval. Since each interval of the boundary corresponds directly to
a node of the cycle and vice versa we can make the following observation.

Observation 1 Any hunter strategy for the Hunter vs. Rabbit game on the circle with
circumference n can be simulated on the n-node cycle, achieving the same expected
escape length.

The O(n)-round hunter strategy for catching the rabbit on the circle consists of two
phases that work as follows. In an initialization phase that lasts for dn/2e rounds the
hunter first selects a random position on the boundary as the starting position of the
following main phase. Then the hunter goes to this position. Note that dn/2e rounds
suffice for the hunter to reach any position on the circle boundary. We will not care
whether the rabbit gets caught during the initialization phase. Therefore there is no
need for specifying the exact route taken by the hunter to get to the starting position.

After the first dn/2e rounds the main phase lasting for n rounds starts. The hunter
selects a velocity uniformly at random between 0 and 1 and proceeds in a clockwise
direction according to this velocity. This means that a hunter with starting position
s ∈ [0, n) and velocity v ∈ [0, 1] resides at position (s + t · v) mod n in the tth round
of the main phase. Obviously this so called RANDOMSPEED-strategy is an O(n)-round
hunter strategy since at most d 3

2ne nodes are visited. The following analysis shows that
it achieves the desired probability of catching the rabbit when simulated on the n-node
cycle.

Theorem 2. On an n-node cycle a hunter using the RANDOMSPEED-strategy catches
the rabbit with probability at least 1

2Hn+1 = Ω( 1
log(n) ).

Proof. We prove that the bound holds for the Hunter vs. Rabbit game on the circle. The
theorem then follows from Observation 1.

Since the rabbit strategy is oblivious in the sense that it does not know the random
choices made by the hunter we can assume that the rabbit strategy is fixed in the be-
ginning before the hunter starts. Thus, let R = R0,R1, . . . ,Rn−1 denote the rabbit
strategy during the main phase, i.e., Rt is the interval containing the rabbit in round t
of this phase.

For this rabbit strategy let hits denote a random variable counting how often the
hunter catches the rabbit. This means hits is the number of rounds during the main
phase in which the hunter and the rabbit reside in the same interval. The theorem
follows by showing that for any rabbit strategy R the probability Pr [hits ≥ 1] =



Pr [hunter catches rabbit] is larger than 1
2Hn+1 . For this we use Proposition 2 to es-

timate E [hits] and E
[

hits2
]

. Let Ω = [0, n) × [0, 1] denote the sample space of
the random experiment performed by the hunter. Further let St

i ⊂ Ω denote the sub-
set of random choices such that the hunter resides in the ith interval during the tth
round of the main phase. The hunter catches the rabbit in round t iff his random choice
ω ∈ Ω is in the set St

Rt
. By identifying St

Rt
with its indicator function we can write

hits(ω) =
∑n−1

t=0 St
Rt

(ω).

st
ar

tin
g

po
si

tio
n

s

velocity v

Ω

S
2
7

S
6
5

S0

2

0

1

2

3

4

5

6

7

0 1

0

(a)

ha

a

S
s
i

S
t
j

(b)

Fig. 1. (a) The sample space Ω of the RANDOMSPEED strategy can be viewed as the surface of
a cylinder. The sets S

t
i correspond to stripes on this surface. (b) The intersection between two

stripes of slope −s and −t, respectively.

The following interpretation of the sets St
i will help derive bounds for E [hits] and

E
[

hits2
]

. We represent Ω as the surface of a cylinder as shown in Figure 1(a). In
this representation a set St

i corresponds to a stripe around the cylinder that has slope
ds
dv = −t and area 1. To see this recall that a point ω = (s, v) belongs to the set St

i

iff the hunter position pt in round t resulting from the random choice ω lies in the ith
interval Ii. Since pt = (s + t · v) mod n according to the RANDOMSPEED-strategy we
can write St

i as {(s, v) | s = (pt − t · v) mod n ∧ pt ∈ Ii} which corresponds to a
stripe of slope −t. For the area, observe that all n stripes St

i of a fixed slope t together
cover the whole area of the cylinder which is n. Therefore each stripe has the same area
of 1. This yields the following equation.

E [hits] = E

[

n−1
∑

t=0

St
Rt

]

=

n−1
∑

t=0

E
[

St
Rt

]

=

n−1
∑

t=0

∫

Ω

1

n
St
Rt

(ω) dω = 1 (1)

Note that
∫

Ω
St
Rt

(ω) dω is the area of a stripe and that 1
n is the density of the uniform

distribution over Ω.
We now provide an upper bound on E

[

hits2
]

. By definition of hits we have,

E
[

hits2
]

= E





(

n−1
∑

t=0

St
Rt

)2


 = E

[

n−1
∑

s=0

n−1
∑

t=0

Ss
Rs

· St
Rt

]

=

n−1
∑

s=0

n−1
∑

t=0

∫

Ω

1

n
Ss
Rs

(ω) · St
Rt

(ω) dω .

(2)



Ss
Rs

(ω) · St
Rt

(ω) is the indicator function of the intersection between Ss
Rs

and St
Rt

.
Therefore

∫

Ω
Ss
Rs

(ω) · St
Rt

(ω) dω is the area of the intersection of two stripes and can
be bounded using the following lemma.

Lemma 1. The area of the intersection between two stripes Ss
i and St

j with s, t ∈
{0, . . . , n − 1}, is at most 1

|t−s| .

Proof. W.l.o.g. we assume t > s. Figure 1(b) illustrates the case where the intersection
between both stripes is maximal. Note that the limitation for the slope values together
with the size of the cylinder surface ensures that the intersection is contiguous. This
means the stripes only “meet” once on the surface of the cylinder.

By the definition of Ss
i and St

j the length of the leg a in the figure corresponds to
the length of an interval on the boundary of the circle. Thus a = 1. The length of ha is

a
t−s and therefore the area of the intersection is a · ha = a2

t−s = 1
t−s . This yields the

lemma. ut

Using this Lemma we get

n−1
∑

t=0

∫

Ω

Ss
Rs

(ω) · St
Rt

(ω) dω ≤
s−1
∑

t=0

1

|t − s| +

∫

Ω

Ss
Rs

(ω) · Ss
Rs

(ω) dω +

n−1
∑

t=s+1

1

|t − s|

=
s
∑

t=1

1

t
+

∫

Ω

Ss
Rs

(ω) dω +
n−s−1
∑

t=1

1

t
≤ 2Hn + 1 .

Plugging the above inequality into Equation 2 yields E
[

hits2
]

≤ 2Hn +1. Combining
this with Proposition 2 and Equation 1 we get Pr [hunter catches rabbit] ≥ 1

2Hn+1
which yields the theorem. ut

2.2 Hunter strategies for general graphs

In this section we extend the upper bound of the previous section to general graphs.

Theorem 3. Let G = (V,E) denote a graph and let diam(G) denote the diameter of
this graph. Then there exists a hunter strategy on G that has expected escape length
O(|V | · log(diam(G))).

Proof. (Sketch) We cover the graph with r = Θ(n/d) cycles C1, . . . , Cr of length d
where d = Θ(diam(G)), that is, each node is contained in at least one of these cycles
(in order to obtain this covering, construct a tour of length 2n − 2 along an arbitrary
spanning tree, cut the tour into subpaths of length d/2 and then form a cycle of length
d from each of these subpaths). From now on, if hunter or rabbit resides at a node of
G corresponding to several cycle nodes, then we assume they commit to one of these
virtual nodes and the hunter catches the rabbit only if they commit to the same node.
This only slows down the hunter.

The hunter strategy now is to choose one of the r cycles uniformly at random and
simulate the RANDOMSPEED-strategy on this cycle. Call this a phase. Observe that
each phase takes only Θ(d) rounds. The hunter executes phase after phase, each time



choosing a new random cycle, until the rabbit is caught. In the following we will show
that the success probability within each phase is Ω(d/nHd), which implies the theorem.

Let us focus on a particular phase. Suppose the hunter has chosen cycle Ci. Recall
that the hunter chooses a random node v from Ci, walks to v and then starts traversing
the cycle at a random speed. In the following consider only the hits in the main phase,
i.e., those rounds after reaching v. The probability that hunter and rabbit reside in the
same cycle at the beginning of the main phase is 1/r. For simplicity, let us assume that
the rabbit does not leave this cycle during the main phase. Under this simplifying as-
sumption, Theorem 2 yields immediately that Pr [hits ≥ 1] ≥ 1

r(2Hd+1) = Ω(d/nHd).
In a full version we will prove this bound rigorously without this simplifying assump-
tion.

ut

3 Lower bounds and efficient rabbit strategies

We first prove that the hunter strategy for the cycle described in Section 2.1 is tight
by giving an efficient rabbit strategy for the cycle. Then we provide lower bounds that
match the upper bounds for general graphs given in Section 2.2.

3.1 An optimal rabbit strategy for the cycle

In this section we will prove a tight lower bound for any (mixed) hunter strategy on
a cycle of length n. In particular, we describe a rabbit strategy such that every hunter
needs Ω(n log(n)) expected time to catch the rabbit. We assume that the rabbit is un-
restricted, i.e., can jump between arbitrary nodes, whereas the hunter is restricted to
follow the edges of the cycle.

Theorem 4. For the cycle of length n, there is a mixed, unrestricted rabbit strategy
with escape length Ω(n log(n)) against any restricted hunter strategy.

The rabbit strategy is based on a non-standard random walk. Observe that a standard
random walk has the limitation that after n rounds, the rabbit is confined to a neighbor-
hood of about

√
n nodes around the starting position. Hence the rabbit is easily caught

by a hunter that just sweeps across the ring (in one direction) in n steps. Also, the other
extreme where the rabbit makes a jump to a node chosen uniformly at random in every
round does not work, since in each round the rabbit is caught with probability exactly
1/n, giving an escape length of O(n). But the following strategy will prove to be good
for the rabbit. The rabbit will change to a randomly chosen position every n rounds
and then, for the next n − 1 rounds, it performs a “heavy-tailed random walk”. For this
n-round strategy and any n-round hunter strategy, we will show that the hunter catches
the rabbit with probability O(1/Hn). As a consequence, the expected escape length is
Ω(n log n), which gives the theorem.



A heavy-tailed random walk. We define a random walk on � as follows. At time 0 a
particle starts at position X0 = 0. In a step t ≥ 1, the particle makes a random jump
xt ∈ � from position Xt−1 to position Xt = Xt−1 + xt, where the jump length is
determined by the following heavy-tailed probability distribution P .

Pr [xt = k] = Pr [xt = −k] =
1

2(k + 1)(k + 2)
,

for every k ≥ 1 and Pr [xt = 0] = 1
2 . Observe that Pr [|xt| ≥ k] = (k + 1)−1, for

every k ≥ 0. The following lemma gives a property of this random walk that will be
crucial for the proof of our lower bound. Due to space limitations, the proof for this
lemma appears in the full version.

Lemma 2. There is a constant c0 > 0, such that, for every t ≥ 1 and ` ∈ {−t, . . . , t},
Pr [Xt = `] ≥ c0/t.

The rabbit strategy. Our n-round rabbit strategy starts at a random position on the
cycle. Starting from this position, for the next n − 1 rounds, the rabbit simulates the
heavy-tailed random walk in a wrap-around fashion on the cycle. The following lemma
immediately implies Theorem 4.

Lemma 3. The probability that the hunter catches the rabbit within n rounds is
O(1/Hn).

Proof. Fix any n-round hunter strategy H = H0,H1, . . . ,Hn−1. Because of Proposi-
tion 1 we only need to estimate E[hits] and E[hits | hits ≥ 1]. First, we observe that
E[hits] = 1. This is because the rabbit chooses its starting position uniformly at ran-
dom so that Pr[hit(t) = 1] = 1/n for 0 ≤ t < n, and hence E[hit(t)] = Pr[hit(t) =

1] = 1/n. By linearity of expectation, we obtain E[hits ] =
∑n−1

t=0 E[hit(t)] = 1. Thus,
it remains only to show that E [hits | hits ≥ 1] ≥ c0Hn. In fact, the idea behind the
following proof is that we have chosen the rabbit strategy in such a way that when the
rabbit is hit by the hunter in a round then it is likely that it will be hit additionally in
several later rounds as well.

Claim. For every τ ∈ {0, . . . , n
2 − 1}, E [hits | fhit(τ) = 1] ≥ c1Hn, for a suitable

constant c1.

Proof. Assume hunter and rabbit met at time τ for the first time, i.e., fhit(τ) = 1.
Observe that the hunter has to stay somewhere in interval [Hτ −(t−τ),Hτ +(t−τ)] in
round t > τ as he is restricted to the cycle. The heavy-tailed random walk will also have
some tendency to stay in this interval. In particular, Lemma 2 implies, for every t > τ ,
Pr[hit(t)] ≥ c0/(t−τ). Consequently, E[hits | fhit(τ) ≥ 1 ] ≥ 1+

∑n−1
t=τ+1 c0/(t−τ),

which is Ω(Hn) since τ < n/2. ut



With this result at hand, we can now estimate the expected number of repeated hits
as follows.

E [hits | hits ≥ 1] =

n−1
∑

τ=0

E [hits | fhit(τ) = 1] · Pr [fhit(τ) = 1 | hits ≥ 1]

≥
n/2−1
∑

τ=0

E [hits | fhit(τ) = 1] · Pr [fhit(τ) = 1 | hits ≥ 1]

≥ c1 Hn

n/2−1
∑

τ=0

Pr [fhit(τ) = 1 | hits ≥ 1] .

Finally, observe that

n/2−1
∑

τ=0

Pr [fhit(τ) = 1 | hits ≥ 1] +
n−1
∑

τ=n/2

Pr [fhit(τ) = 1 | hits ≥ 1] = 1 .

Thus, one of the two sums must be greater than or equal to 1
2 . If the first sum is at

least 1
2 , then we directly obtain E [hits | hits ≥ 1] ≥ 1

2c1 Hn. In the other case, one can
prove the same lower bound by going backward instead of forward in time, that is, by
summing over the last hits instead of the first hits. Hence Lemma 3 is shown. ut

3.2 A lower bound in terms of the diameter

In this section, we show that the upper bound of Section 2.2 is asymptotically tight for
the parameters n and diam(G). We will use the efficient rabbit strategy for cycles as a
subroutine on graphs with arbitrary diameter.

Theorem 5. For any positive integers n, d with d < n there exists a graph G with
n nodes and diameter d such that any hunter strategy on G has escape length Ω(n ·
log(d)).

Proof. For simplicity, we assume that n is odd, d = 3d′ and N = (n − 1)/2 is a
multiple of d′. The graph G consists of a center s ∈ V and N/d′ subgraphs called
loops. Each loop consists of a cycle of length d′ and a linear array of d′ + 2 nodes such
that the first node of the linear array is identified with one of the nodes on the cycle and
the last node is identified with s. Thus, all loop subgraphs share the center s, otherwise
the node sets are disjoint.

Every d′ rounds the rabbit chooses uniformly at random one of the N/d′ loops and
performs the optimal d′-round cycle strategy from Section 3.1 on the cycle of this loop
graph. Observe that the hunter cannot visit nodes in different cycles during a phase of
length d′. Hence, the probability that the rabbit chooses a cycle visited by the hunter is
at most d′/N . Provided that the rabbit chooses the cycle visited by the hunter the prob-
ability that it is caught during the next d′ rounds is O( 1

H
d′

) by Lemma 3. Consequently,

the probability of being caught in one of the independent d′-round games is O( d′

nH
d′

).
Thus, the escape length is Ω(nHd′) which is Ω(n · log(d)). ut



References

1. R. Aleliunas, R. M. Karp, R. J. Lipton, L. Lovasz, and C. Rackoff. Random walks, universal
traversal sequences, and the complexity of maze problems. In Proceedings of the 20th IEEE
Symposium on Foundations of Computer Science (FOCS), pages 218–223, 1979.

2. I. Chatzigiannakis, S. Nikoletseas, N. Paspallis, P. Spirakis, and C. Zaroliagis. An experi-
mental study of basic communication protocols in ad-hoc mobile networks. In Proceedings
of the 5thWorkshop on Algorithmic Engineering, pages 159–171.

3. I. Chatzigiannakis, S. Nikoletseas, and P. Spirakis. Self-organizing ad-hoc mobile networks:
The problem of end-to-end communication. In Proceedings of the 20th ACM Symposium on
Principles of Distributed Computing (PODC 2001), 2001.

4. A. Efrat, L. J. Guibas, S. Har-Peled, D. C. Lin, J. S. B. Mitchell, and T. M. Murali. Sweeping
simple polygons with a chain of guards. In Proceedings of the 11th ACM-SIAM Symposium
on Discrete Algorithms (SODA), pages 927–936, 2000.

5. M. K. Franklin, Z. Galil, and M. Yung. Eavesdropping games: a graph-theoretic approach to
privacy in distributed systems. Journal of the ACM, 47(2):225–243, 2000.

6. L. J. Guibas, J.-C. Latombe, S. M. LaValle, D. Lin, and R. Motwani. A visibility-based
pursuit-evasion problem. International Journal of Computational Geometry and Applica-
tions (IJCGA), 9(4):471–493, 1999.

7. K. Hatzis, G. Pentaris, P. Spirakis, and V. Tampakas. Implementation and testing eaves-
dropper protocols using the DSP tool. In Proceedings of the 2nd Workshop on Algorithm
Engineering (WAE), pages 74–85, 1998.

8. L. M. Kirousis and C. H. Papadimitriou. Searching and pebbling. Theoretical Computer
Science, 47:205–218, 1986.

9. A. S. LaPaugh. Recontamination does not help to search a graph. Journal of the ACM,
40(2):224–245, 1993.

10. S. M. LaValle and J. Hinrichsen. Visibility-based pursuit-evasion: The case of curved envi-
ronments. In Proceedings of the IEEE International Conference on Robotics and Automation
(ICRA), pages 1677–1682, 1999.

11. N. Megiddo, S. L. Hakimi, M. R. Garey, D. S. Johnson, and C. H. Papadimitriou. The
complexity of searching a graph. Journal of the ACM, 35(1):18–44, 1988.

12. R. Motwani and P. Raghavan. Randomized Algorithms. Cambridge University Press, 1995.
13. S.-M. Park, J.-H. Lee, and K.-Y. Chwa. Visibility-based pursuit-evasion in a polgonal region

by a searcher. In Proceedings of the 28th International Colloquium on Automata, Languages
and Programming (ICALP), pages 456–468, 2001.

14. T. D. Parsons. Pursuit-evasion in a graph. In Y. Alavi and D. Lick, editors, Theory and
Applications of Graphs, Lecture Notes in Mathematics, pages 426–441. Springer, 1976.

15. T. D. Parsons. The search number of a connected graph. In Proceedings of the 9th South-
eastern Conference on Combinatorics, Graph Theory and Computing, pages 549–554, 1978.

16. I. Suzuki and M. Yamashita. Searching for a mobile intruder in a polygonal region. SIAM
Journal on Computing, 21(5):863–888, 1992.


