Recommended reading:

- **Decision trees**: Mitchell Chapter 3
- **MDL**: Mitchell Chapter 6.6; Bishop Chapter 10.10;
Each internal node: test one attribute X_i
Each branch from a node: selects one value for X_i
Each leaf node: predict Y (or $P(Y|X \in \text{leaf})$)

How would you represent $AB \lor CD(\neg E)$?
A Tree to Predict C-Section Risk

Learned from medical records of 1000 women
Negative examples are C-sections

[833+, 167-] .83+ .17-
Fetal_Presentation = 1: [822+, 116-] .88+ .12-
 | Previous_Csection = 0: [767+, 81-] .90+ .10-
 | | Primiparous = 0: [399+, 13-] .97+ .03-
 | | Primiparous = 1: [368+, 68-] .84+ .16-
 | | | Fetal_Distress = 0: [334+, 47-] .88+ .12-
 | | | | Birth_Weight < 3349: [201+, 10.6-] .95+ .05-
 | | | | Birth_Weight >= 3349: [133+, 36.4-] .78+
 | | | Fetal_Distress = 1: [34+, 21-] .62+ .38-
 | Previous_Csection = 1: [55+, 35-] .61+ .39-
Fetal_Presentation = 2: [3+, 29-] .11+ .89-
Fetal_Presentation = 3: [8+, 22-] .27+ .73-
Top-Down Induction of Decision Trees

node = Root

Main loop:
1. $A \leftarrow$ the “best” decision attribute for next node
2. Assign A as decision attribute for node
3. For each value of A, create new descendant of node
4. Sort training examples to leaf nodes
5. If training examples perfectly classified, Then STOP, Else iterate over new leaf nodes

Which attribute is best?

- $A_1 = ?$
 - t: $[21+, 5-]$
 - f: $[8+, 30-]$
- $A_2 = ?$
 - t: $[18+, 33-]$
 - f: $[11+, 2-]$
Entropy

Entropy $H(X)$ of a random variable X

$$H(X) = - \sum_{i=1}^{n} P(X = i) \log_2 P(X = i)$$

$H(X)$ is the expected number of bits needed to encode a randomly drawn value of X (under most efficient code)

Why? Information theory:

• Most efficient code assigns $-\log_2 P(X=i)$ bits to encode the message $X=i$

• So, expected number of bits is:

$$\sum_{i=1}^{n} P(X = i)(- \log_2 P(X = i))$$
Sample Entropy

- S is a sample of training examples
- p_\oplus is the proportion of positive examples in S
- p_\ominus is the proportion of negative examples in S
- Entropy measures the impurity of S

$$Entropy(S) \equiv -p_\oplus \log_2 p_\oplus - p_\ominus \log_2 p_\ominus$$
Information Gain

\[
Gain(S, A) = \text{expected reduction in entropy due to sorting on } A
\]

\[
Gain(S, A) \equiv \text{Entropy}(S) - \sum_{v \in \text{Values}(A)} \frac{|S_v|}{|S|} \text{Entropy}(S_v)
\]

[29+, 35-] A1=?

[21+, 5-] [8+, 30-]

[29+, 35-] A2=?

[18+, 33-] [11+, 2-]
Training Examples

<table>
<thead>
<tr>
<th>Day</th>
<th>Outlook</th>
<th>Temperature</th>
<th>Humidity</th>
<th>Wind</th>
<th>PlayTennis</th>
</tr>
</thead>
<tbody>
<tr>
<td>D1</td>
<td>Sunny</td>
<td>Hot</td>
<td>High</td>
<td>Weak</td>
<td>No</td>
</tr>
<tr>
<td>D2</td>
<td>Sunny</td>
<td>Hot</td>
<td>High</td>
<td>Strong</td>
<td>No</td>
</tr>
<tr>
<td>D3</td>
<td>Overcast</td>
<td>Hot</td>
<td>High</td>
<td>Weak</td>
<td>Yes</td>
</tr>
<tr>
<td>D4</td>
<td>Rain</td>
<td>Mild</td>
<td>High</td>
<td>Weak</td>
<td>Yes</td>
</tr>
<tr>
<td>D5</td>
<td>Rain</td>
<td>Cool</td>
<td>Normal</td>
<td>Weak</td>
<td>Yes</td>
</tr>
<tr>
<td>D6</td>
<td>Rain</td>
<td>Cool</td>
<td>Normal</td>
<td>Strong</td>
<td>No</td>
</tr>
<tr>
<td>D7</td>
<td>Overcast</td>
<td>Cool</td>
<td>Normal</td>
<td>Strong</td>
<td>Yes</td>
</tr>
<tr>
<td>D8</td>
<td>Sunny</td>
<td>Mild</td>
<td>High</td>
<td>Weak</td>
<td>No</td>
</tr>
<tr>
<td>D9</td>
<td>Sunny</td>
<td>Cool</td>
<td>Normal</td>
<td>Weak</td>
<td>Yes</td>
</tr>
<tr>
<td>D10</td>
<td>Rain</td>
<td>Mild</td>
<td>Normal</td>
<td>Weak</td>
<td>Yes</td>
</tr>
<tr>
<td>D11</td>
<td>Sunny</td>
<td>Mild</td>
<td>Normal</td>
<td>Strong</td>
<td>Yes</td>
</tr>
<tr>
<td>D12</td>
<td>Overcast</td>
<td>Mild</td>
<td>High</td>
<td>Strong</td>
<td>Yes</td>
</tr>
<tr>
<td>D13</td>
<td>Overcast</td>
<td>Hot</td>
<td>Normal</td>
<td>Weak</td>
<td>Yes</td>
</tr>
<tr>
<td>D14</td>
<td>Rain</td>
<td>Mild</td>
<td>High</td>
<td>Strong</td>
<td>No</td>
</tr>
</tbody>
</table>
Selecting the Next Attribute

Which attribute is the best classifier?

\[S: [9+,5-] \]
\[E = 0.940 \]

\[\text{Humidity} \]

\[\text{High} \]
\[[3+,4-] \]
\[E = 0.985 \]

\[\text{Normal} \]
\[[6+,1-] \]
\[E = 0.592 \]

\[\text{Gain} (S, \text{Humidity}) \]
\[= 0.940 - (7/14) \times 0.985 - (7/14) \times 0.592 \]
\[= 0.151 \]

\[S: [9+,5-] \]
\[E = 0.940 \]

\[\text{Wind} \]

\[\text{Weak} \]
\[[6+,2-] \]
\[E = 0.811 \]

\[\text{Strong} \]
\[[3+,3-] \]
\[E = 1.00 \]

\[\text{Gain} (S, \text{Wind}) \]
\[= 0.940 - (8/14) \times 0.811 - (6/14) \times 1.0 \]
\[= 0.048 \]
Which attribute should be tested here?

\(S_{\text{sunny}} = \{D_1, D_2, D_8, D_9, D_{11}\} \)

\[
\text{Gain} (S_{\text{sunny}}, \text{Humidity}) = .970 - (3/5) 0.0 - (2/5) 0.0 = .970
\]

\[
\text{Gain} (S_{\text{sunny}}, \text{Temperature}) = .970 - (2/5) 0.0 - (2/5) 1.0 - (1/5) 0.0 = .570
\]

\[
\text{Gain} (S_{\text{sunny}}, \text{Wind}) = .970 - (2/5) 1.0 - (3/5) .918 = .019
\]
Inductive Bias in ID3

Note H is the power set of instances X
→ Unbiased?

Not really...

- Preference for short trees, and for those with high information gain attributes near the root
- Bias is a *preference* for some hypotheses, rather than a *restriction* of hypothesis space H
- Occam’s razor: prefer the shortest hypothesis that fits the data
Occam’s Razor

Why prefer short hypotheses?

Argument in favor:

- Fewer short hyps. than long hyps.

→ a short hyp that fits data unlikely to be coincidence

→ a long hyp that fits data might be coincidence

Argument opposed:

- There are many ways to define small sets of hyps
- e.g., all trees with a prime number of nodes that use attributes beginning with “Z”
- What’s so special about small sets based on size of hypothesis??
Overfitting in Decision Trees

Consider adding noisy training example #15:

Sunny, Hot, Normal, Strong, PlayTennis = No

What effect on earlier tree?
Overfitting in Decision Tree Learning

![Graph showing accuracy vs. size of tree]

- On training data
- On test data
Avoiding Overfitting

How can we avoid overfitting?

- stop growing when data split not statistically significant
- grow full tree, then post-prune

How to select “best” tree:

- Measure performance over training data
- Measure performance over separate validation data set
- MDL: minimize

\[\text{size}(\text{tree}) + \text{size}(\text{misclassifications}(\text{tree})) \]
Minimum Description Length Principle

Occam’s razor: prefer the shortest hypothesis

MDL: prefer the hypothesis \(h \) that minimizes

\[
 h_{MDL} = \arg\min_{h \in H} L_{C_1}(h) + L_{C_2}(D|h)
\]

where \(L_C(x) \) is the description length of \(x \) under encoding \(C \)

Example: \(H = \) decision trees, \(D = \) training data labels

- \(L_{C_1}(h) \) is \# bits to describe tree \(h \)
- \(L_{C_2}(D|h) \) is \# bits to describe \(D \) given \(h \)
 - Note \(L_{C_2}(D|h) = 0 \) if examples classified perfectly by \(h \). Need only describe exceptions
- Hence \(h_{MDL} \) trades off tree size for training errors
Minimum Description Length Principle

\[h_{MAP} = \arg \max_{h \in H} P(D|h)P(h) \]
\[= \arg \max_{h \in H} \log_2 P(D|h) + \log_2 P(h) \]
\[= \arg \min_{h \in H} -\log_2 P(D|h) - \log_2 P(h) \quad (1) \]

Interesting fact from information theory:

The optimal (shortest expected coding length) code for an event with probability \(p \) is \(-\log_2 p \) bits.

So interpret (1):

- \(-\log_2 P(h) \) is length of \(h \) under optimal code
- \(-\log_2 P(D|h) \) is length of \(D \) given \(h \) under optimal code

→ prefer the hypothesis that minimizes

\[\text{length}(h) + \text{length}(ext{misclassifications}) \]
Reduced-Error Pruning

Split data into *training* and *validation* set

Do until further pruning is harmful:

1. Evaluate impact on *validation* set of pruning each possible node (plus those below it)

2. Greedily remove the one that most improves *validation* set accuracy

- produces smallest version of most accurate subtree
- What if data is limited?
Effect of Reduced-Error Pruning

![Graph showing the effect of reduced-error pruning on accuracy as a function of tree size.](image)

- On training data
- On test data
- On test data (during pruning)

Accuracy vs. Size of tree (number of nodes)
Rule Post-Pruning

1. Convert tree to equivalent set of rules
2. Prune each rule independently of others
3. Sort final rules into desired sequence for use

Perhaps most frequently used method (e.g., C4.5)
Converting A Tree to Rules

IF \((Outlook = Sunny) \land (Humidity = High)\) THEN \(PlayTennis = No\)

IF \((Outlook = Sunny) \land (Humidity = Normal)\) THEN \(PlayTennis = Yes\)
Continuous Valued Attributes

Create a discrete attribute to test continuous

- $Temperature = 82.5$
- $(Temperature > 72.3) = t, f$

<table>
<thead>
<tr>
<th>Temperature:</th>
<th>40</th>
<th>48</th>
<th>60</th>
<th>72</th>
<th>80</th>
<th>90</th>
</tr>
</thead>
<tbody>
<tr>
<td>PlayTennis:</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
</tbody>
</table>
Attributes with Many Values

Problem:

- If attribute has many values, Gain will select it
- Imagine using Date = Jun.3.1996 as attribute

One approach: use GainRatio instead

\[
GainRatio(S, A) \equiv \frac{Gain(S, A)}{SplitInformation(S, A)}
\]

\[
SplitInformation(S, A) \equiv - \sum_{i=1}^{c} \frac{|S_i|}{|S|} \log_2 \frac{|S_i|}{|S|}
\]

where \(S_i \) is subset of \(S \) for which \(A \) has value \(v_i \)
Unknown Attribute Values

What if some examples missing values of A? Use training example anyway, sort through tree

- If node n tests A, assign most common value of A among other examples sorted to node n

- Assign most common value of A among other examples with same target value

- Assign probability p_i to each possible value v_i of A

 - Assign fraction p_i of example to each descendant in tree

Classify new examples in same fashion
Boosting [Schapire, 1989]

• Idea: given a weak learner, run it multiple times on (reweighted) training data, then let learned classifiers vote

• On each iteration, weight each training example by how incorrectly it was classified

• Practically useful

• Theoretically interesting
Given: \((x_1, y_1), \ldots, (x_m, y_m)\) where \(x_i \in X, y_i \in Y = \{-1, +1\}\)
Initialize \(D_1(i) = 1/m\).

For \(t = 1, \ldots, T\):

- Train base learner using distribution \(D_t\).
- Get base classifier \(h_t : X \to \mathbb{R}\).
- Choose \(\alpha_t \in \mathbb{R}\).
- Update:
 \[
 D_{t+1}(i) = \frac{D_t(i) \exp(-\alpha_t y_i h_t(x_i))}{Z_t}
 \]
 where \(Z_t\) is a normalization factor
 \[
 Z_t = \sum_{i=1}^{m} D_t(i) \exp(-\alpha_t y_i h_t(x_i))
 \]

Output the final classifier:
 \[
 H(x) = \text{sign} \left(\sum_{t=1}^{T} \alpha_t h_t(x) \right).
 \]

Figure 1: The boosting algorithm AdaBoost.
Given: $(x_1, y_1), \ldots, (x_m, y_m)$ where $x_i \in X$, $y_i \in Y = \{-1, +1\}$
Initialize $D_1(i) = 1/m$.
For $t = 1, \ldots, T$:

- Train base learner using distribution D_t.
- Get base classifier $h_t : X \to \mathbb{R}$.
- Choose $\alpha_t \in \mathbb{R}$.
- Update:

$$
\alpha_t = \frac{1}{2} \ln \left(\frac{1 - \epsilon_t}{\epsilon_t} \right)
$$

$$
D_{t+1}(i) = \frac{D_t(i) \exp(-\alpha_ty_i h_t(x_i))}{Z_t}
$$

where Z_t is a normalization factor

$$
Z_t = \sum_{i=1}^{m} D_t(i) \exp(-\alpha_ty_i h_t(x_i))
$$

Output the final classifier:

$$
H(x) = \text{sign} \left(\sum_{t=1}^{T} \alpha_t h_t(x) \right).
$$

Figure 1: The boosting algorithm AdaBoost.
What α_t to choose for hypothesis h_t?

Training error of final classifier is bounded by:

$$\frac{1}{m} \sum_{i=1}^{m} \delta(H(x_i) \neq y_i) \leq \frac{1}{m} \sum_{i} \exp(-y_i f(x_i)) = \prod_{t} Z_t$$

Where $f(x) = \sum_{t} \alpha_t h_t(x); H(x) = \text{sign}(f(x))$

We can minimize this bound by choosing α_t and h_t on each iteration to minimize Z_t.

$$Z_t = \sum_{i=1}^{m} D_t(i) \exp(-\alpha_t y_i h_t(x_i))$$
What α_t to choose for hypothesis h_t?

We can minimize this bound by choosing α_t on each iteration to minimize Z_t,

$$Z_t = \sum_{i=1}^{m} D_t(i) \exp(-\alpha_t y_i h_t(x_i))$$

For boolean target function, this is accomplished by:

$$\alpha_t = \frac{1}{2} \ln \left(\frac{1 - \epsilon_t}{\epsilon_t} \right)$$

$$\epsilon_t = \frac{1}{\sum_{i=1}^{n} D_t(i)} \sum_{i=1}^{m} D_l(i) \delta(h_l(x_i) \neq y_i)$$
Comparison of C4.5, Boosting C4.5, Boosting decision stumps (depth 1 trees), 27 benchmark datasets

[Freund & Schapire, 1996]
AdaBoost and AdaBoost.MH on Train (left) and Test (right) data from Irvine repository. [Schapire and Singer, ML 1999]
Boosting and Logistic Regression

Logistic regression assumes:

\[P(Y = 1|X) = \frac{1}{1 + \exp(f(x))} \]

And tries to maximize data likelihood:

\[P(data|H) = \prod_{i=1}^{m} \frac{1}{1 + \exp(-y_if(x_i))} \]

Equivalent to minimizing log loss

\[\sum_{i=1}^{m} \ln(1 + \exp(-y_if(x_i))) \]
Boosting and Logistic Regression

Logistic regression assumes:

\[P(Y = 1|X) = \frac{1}{1 + \exp(f(x))} \]

And tries to maximize conditional data likelihood:

\[\prod_{i=1}^{m} \frac{1}{1 + \exp(-y_if(x_i))} \]

Equivalent to minimizing log loss

\[\sum_{i=1}^{m} \ln(1 + \exp(-y_if(x_i))) \]

Boosting minimizes similar loss function!!

\[\frac{1}{m} \sum_{i} \exp(-y_if(x_i)) = \prod_{t} Z_t \]
Logistic regression and Boosting

- Minimize loss fn
 \[\sum_{i=1}^{m} \ln(1 + \exp(-y_if(x_i))) \]

- Define
 \[f(x) = \sum_j w_j x_j \]
 where \(x_j \) predefined

- Minimize loss fn
 \[\sum_{i=1}^{m} \exp(-y_if(x_i)) \]

- Define
 \[f(x) = \sum_t \alpha_t h_t(x) \]
 where \(h(x) \) defined dynamically to fit data

- Weights \(\alpha_j \) learned incrementally
What you should know:

• Decision trees
 – ID3, C4.5
 – Rule extraction from trees
 – Overfitting and tree/rule post-pruning
 – Extensions…

• Minimum description length approach
 – And it’s Bayesian interpretation

• Boosting
 – Practical approach to improving accuracy
 – Exponential loss function;
 – relationship to logistic regression