Bias and Variance in Learning

Instance-Based Learning

Recommended reading:
- Bias-Variance: Bishop chapter 9.1, 9.2
- Instance-based learning: Mitchell chapter 8.1 – 8.4

Machine Learning 10-701

Tom M. Mitchell
Carnegie Mellon University
Previous lecture:
(see new lecture notes on class website)
• Logistic regression
• Generative and discriminative classifiers
 – E.g, Naïve Bayes and Logistic regression

This lecture:
• Training for logistic regression
• Bias-Variance decomposition of error
• Instance-based learning
Logistic regression

Form of \(P(Y|X) \):

\[
P(Y = 0|X) = \frac{1}{1 + \exp(w_0 + \sum_{i=1}^{n} w_i X_i)}
\]

\[
P(Y = 1|X) = \frac{\exp(w_0 + \sum_{i=1}^{n} w_i X_i)}{1 + \exp(w_0 + \sum_{i=1}^{n} w_i X_i)}
\]

Training: choose weights \(w_i \) to maximize

- conditional data likelihood:

\[
W \leftarrow \arg \max_W \sum_l \ln P(Y^l|X^l, W)
\]

- or classification accuracy

\[
W \leftarrow \arg \max_W \sum_l \delta(Y^l = h(X^l, W))
\]
Log likelihood

\[l(W) = \sum_l Y^l \ln P(Y^l = 1|X^l, W) + (1 - Y^l) \ln P(Y^l = 0|X^l, W) \]

\[= \sum_l Y^l \ln \frac{P(Y^l = 1|X^l, W)}{P(Y^l = 0|X^l, W)} + \ln P(Y^l = 0|X^l, W) \]

\[= \sum_l Y^l (w_0 + \sum_i^n w_i X^l_i) - \ln (1 + \exp(w_0 + \sum_i^n w_i X^l_i)) \]

\[\frac{\partial l(W)}{\partial w_i} = \sum_l X^l_i (Y^l - \hat{P}(Y^l = 1|X^l, W)) \]

- Note: this likelihood is a concave in \(w \)
Maximizing conditional log likelihood

\[
\frac{\partial l(W)}{\partial w_i} = \sum_l X_i^l (Y^l - \hat{P}(Y^l = 1|X^l, W))
\]

Gradient ascent rule:

\[
\omega_i \leftarrow \omega_i + \eta \sum_l X_i^l (Y^l - \hat{P}(Y^l = 1|X^l, W))
\]
Regularization

The issue: fear of overfitting training data at the expense of poorly fitting future data

The approach: choose weights that maximize a new, penalized likelihood function

\[
W \leftarrow \arg \max_W \sum_l \ln P(Y^l|X^l, W) - \frac{\lambda}{2} ||W||^2
\]

Penalty term, Regularization term
Regularization

The $||W||^2$ penalty corresponds to adding a Gaussian prior to our weight estimator!

Maximum likelihood estimate:

$$ W \leftarrow \arg \max_W P(Data|W) $$

MAP estimate:

$$ W \leftarrow \arg \max_W P(W|Data) = \arg \max_W P(Data|W)P(W) $$

$$ = \arg \max_W \log P(Data|W) + \log P(W) $$
Regularization

The $||W||^2$ penalty corresponds to adding a Gaussian prior to our weight estimator!

Maximum likelihood:

$$W \leftarrow \arg \max_W P(Data|W)$$

MAP estimate:

$$W \leftarrow \arg \max_W P(W|Data) = \arg \max_W P(Data|W)P(W)$$

$$= \arg \max_W \log P(Data|W) + \log P(W)$$

$$= \arg \max_W c \cdot ||W||^2$$
Regularization in Logistic Regression

\[W \leftarrow \text{arg max}_W \sum_l \ln P(Y^l | X^l, W) - \frac{\lambda}{2} ||W||^2 \]

\[l(W) \]

\[\frac{\partial l(W)}{\partial w_i} = \sum_l X^l_i (Y^l - \hat{P}(Y^l = 1 | X^l, W)) - \lambda w_i \]

New gradient ascent rule:

\[w_i \leftarrow w_i + \eta \sum_l X^l_i (Y^l - \hat{P}(Y^l = 1 | X^l, W)) - \eta \lambda w_i \]
Generative vs. Discriminative Classifiers

Training classifiers involves estimating $f: X \rightarrow Y$, or $P(Y|X)$

Generative classifiers:

- Assume some functional form for $P(X|Y)$, $P(X)$
- Estimate parameters of $P(X|Y)$, $P(X)$ directly from training data
- Use Bayes rule to calculate $P(Y|X=x_i)$

Discriminative classifiers:

- Assume some functional form for $P(Y|X)$
- Estimate parameters of $P(Y|X)$ directly from training data
G. Naïve Bayes vs. Logistic Regression

• Generative and Discriminative classifiers

• Asymptotic comparison (# training examples → infinity)
 • when model correct
 • GNB, LR produce identical classifiers
 • when model incorrect
 • LR is less biased – does not assume cond indep.
 • therefore expected to outperform GNB

[Ng & Jordan, 2002]
Naïve Bayes vs. Logistic Regression

• Generative and Discriminative classifiers
• Non-asymptotic analysis
 • convergence rate of parameter estimates
 • GNB order $\log n$ (# of attributes in X)
 • LR order n

GNB converges more quickly to its (perhaps less helpful) asymptotic estimates

[Ng & Jordan, 2002]
Some experiments from UCI data sets

Figure 1: Results of 15 experiments on datasets from the UCI Machine Learning repository. Plots are of generalization error vs. m (averaged over 1000 random train/test splits). Dashed line is logistic regression; solid line is naive Bayes.
Bias – Variance decomposition of error

- Consider simple regression problem \(f: \mathbb{X} \rightarrow \mathbb{Y} \)

 \[
y = f(x) = g(x) + \varepsilon
\]

What are sources of prediction error?

- Noise \(\sim \mathcal{N}(0, \sigma) \)
- Deterministic
Sources of error

• What if we have perfect learner, infinite data?
 – Our learned \(h(x) \) satisfies \(h(x) = g(x) \)
 – Still have remaining, **unavoidable error** of \(\sigma^2 \) due to noise \(\varepsilon \)
Sources of error

- What if we have imperfect learner, or only \(m \) training examples?
- What is our expected squared error per example
 - Expectation taken over random training sets \(D \) of size \(m \), drawn from distribution \(P(X,Y) \)

\[
E_D \left[\int_x \int_y (h(x) - y)^2 p(f(x) = y|x)p(x)dydx \right]
\]
Bias-Variance Decomposition of Error

Assume target function: \(y = f(x) = g(x) + \epsilon \)

Then expected sq error over fixed size training sets \(D \) drawn from \(P(Y,X) \) can be expressed as sum of three components:

\[
ED \left[\int_x \int_y (h(x) - y)^2 p(y|x)p(x) dydx \right] = \text{unavoidable Error} + \text{bias}^2 + \text{variance}
\]

Where:

\[
\text{unavoidable Error} = \sigma^2
\]
\[
\text{bias}^2 = \int (ED[h(x)] - g(x))^2 p(x) dx
\]
\[
\text{variance} = \int ED[(h(x) - ED[h(x)])^2] p(x) dx
\]