Convex Functions (cont.)

Optimization - 10725
Carlos Guestrin
Carnegie Mellon University
March 3rd, 2008

Function $f: \mathbb{R}^n \rightarrow \mathbb{R}$ is convex if

- Domain is convex
- $\forall x, y \in \text{dom } f$, $\theta \in [0, 1]$,
 $$f(\theta x + (1-\theta)y) \leq \theta f(x) + (1-\theta)f(y)$$

Generalization: Jensen's inequality:

$$f(\mathbb{E}[x]) \leq \mathbb{E}[f(x)]$$

Useful in ML

Strictly convex function:

$$\forall x, y \in \text{dom } f, \theta \in (0, 1), x \neq y, \\theta f(x) + (1-\theta)f(y) < f(\theta x + (1-\theta)y)$$
Concave functions

- Function f is concave if
 - $\text{dom} f$ is convex
 - $-f$ is convex

$$f(\omega x + (1-\omega)y) \geq \omega f(x) + (1-\omega)f(y)$$

- Strictly concave:
 - $-f$ is strictly convex

We will be able to optimize:

$$\min_x \begin{cases} f(x) \text{ convex} \quad x \in C \text{ convex set} \end{cases}$$

$$\max_x \begin{cases} f(x) \text{ concave} \quad x \in C \text{ convex set} \end{cases}$$

Proving convexity for a very simple example

- $f(x) = x^2$

$$f(\omega x + (1-\omega)y) \leq \omega f(x) + (1-\omega)f(y)$$

$$(\omega x + (1-\omega)y)^2 \leq \omega x^2 + (1-\omega)y^2$$

$$\omega x^2 + \omega x((\omega-1)x + (1-\omega)y) + (1-\omega)y^2 + (1-\omega)y(\omega x - \omega y)$$

$$\omega^2 x^2 + (1-\omega)y^2 + \omega(1-\omega)(x-y)(y-x) \leq 0$$

$$\omega f(x) + (1-\omega)f(y) + 10 \leq 0$$

Done!!

Boring!!

Better way?

Please...
First order condition

- If \(f \) is differentiable in all \(\text{dom} \ f \)

- Then \(f \) convex if and only if \(\text{dom} \ f \) is convex and

Second order condition (1D \(f \))

- If \(f \) is twice differentiable in \(\text{dom} \ f \)

- Then \(f \) convex if and only if \(\text{dom} \ f \) is convex and

- Note 1: Strictly convex if:

- Note 2: \(\text{dom} \ f \) must be convex
 - \(f(x) = 1/x^2 \)
 - \(\text{dom} f = \{x \in \mathbb{R} \mid x \neq 0\} \)
Second order condition (general case)

- If \(f \) is twice differentiable in \(\text{dom} \ f \)

- Then \(f \) convex if and only if \(\text{dom} \ f \) is convex and

- Note 1: Strictly convex if:

Quadratic programming

- \(f(x) = (1/2) x^T A x + b^T x + c \)

- Convex if:
 - Strictly convex if:

- Concave if:
 - Strictly concave if:
Simple examples

- Exponentiation: e^{ax}
 - Convex on \mathbb{R}, any $a \in \mathbb{R}$

- Powers: x^a on \mathbb{R}_+
 - Convex for $a \leq 0$ or $a \geq 1$
 - Concave for $0 < a < 1$

- Logarithm: $\log x$
 - Concave on \mathbb{R}_+

- Entropy: $-x \log x$
 - Concave on \mathbb{R}_+
 - $(0 \log 0 = 0)$

A few important examples for ML

- Every norm on \mathbb{R}^n is convex

- Log-sum-exp:
 - Convex in \mathbb{R}^n

- Log-det:
 - Convex in $\mathbb{S}^{n \times n}_+$
Extended-value extensions

- Convex function f over convex $\text{dom } f$
- Extended-value extension:
 - Still convex:
 - For concave functions
 - Very nice for notation, e.g.,
 - Minimization:
 - Sum:
 - f_1 over convex $\text{dom } f_1$
 - f_2 over convex $\text{dom } f_2$

Epigraph

- Graph of a function $f: \mathbb{R}^n \rightarrow \mathbb{R}$
 - $\{(x,t) | x \in \text{dom } f, f(x)=t\}$
- Epigraph:
 - $\text{epi } f =$

- Theorem: f is convex if and only if
Support of a convex set and epigraph

- If f is convex & differentiable
 - $f(x) \geq f(x_0) + \nabla f(x_0)^T(x - x_0)$

- For $(x, t) \in \text{epi } f$, $t \geq f(x)$, thus:

- Rewriting:
 $$(x, t) \in \text{epi } f \Rightarrow \begin{bmatrix} \nabla f(x_0) \\ -1 \end{bmatrix}^T \begin{bmatrix} x \\ t \end{bmatrix} - \begin{bmatrix} x_0 \\ f(x_0) \end{bmatrix} \leq 0$$

- Thus, if convex set is defined by epigraph of convex function
 - Obtain support of set by gradient!!
 - If f is not differentiable

Restriction of a convex function to a line

- $f: \mathbb{R}^n \to \mathbb{R}$ convex if and only if $g(t) \ (\mathbb{R} \to \mathbb{R})$ is convex in t
 - For all $x_0 \in \text{dom } f$, $v \in \mathbb{R}^n$
 - $\text{dom } g =$

- Can make it much easier to check if f is convex, e.g.,
 - $f(X) = \log \det X$
 - proof in the book...
Operations that preserve convexity

- Many operations preserve convexity
 - Knowing them will make your life much easier when you want to show that something is convex
 - Examples in next few slides

- Simplest: Non-negative weighted sum:
 - If all \(f_i \)'s are convex, then \(f \) is
 - If all \(f_i \)'s are concave, then \(f \) is
 - Example: integral of \(f(x,y) \)

- Affine mapping: \(f: \mathbb{R}^n \rightarrow \mathbb{R} \), \(A \in \mathbb{R}^{n \times m}, b \in \mathbb{R}^m \)
 - \(g(x) = f(Ax+b) \)
 - \(\text{dom } g = \)
 - If \(f \) is convex, then
 - If \(f \) is concave, then

Pointwise maximum and supremum

- If \(f_i \)'s are convex, then

- Piecewise linear convex functions:
 - Fundamental for POMDPs

- For \(x \) in a convex set \(C \), sum of the \(r \) largest elements:
 - Sort \(x \), pick \(r \) largest components, sum them:

- Maximum eigenvalue of symmetric matrix \(X \in \mathbb{R}^{n \times n}, f: \mathbb{R}^{n \times n} \rightarrow \mathbb{R} \)
 - \(f(X) = \)
Pointwise maximum of affine functions: general representation

- We saw: convex set can be written as intersection of (infinitely many) hyperplanes:
 - \(C \) convex, then

- Convex functions can be written as supremum of (infinitely many) lower bounding hyperplanes:
 - \(f \) convex function, then

Discussion on this slide subject to mild conditions on sets and functions, see book

Composition: scalar differentiable, real domain case

- How do I prove convexity of log-sum-exp-positive-weighted-sum-monomials? 😊

- If \(h: \mathbb{R} \to \mathbb{R} \) and \(g: \mathbb{R}^n \to \mathbb{R}^k \), when is \(f(x) = h(g(x)) \) convex (concave)?
 - \(\text{dom} \ f = \{ x \in \text{dom} \ g | g(x) \in \text{dom} \ h \} \)

- Simple case: \(h: \mathbb{R} \to \mathbb{R} \) and \(g: \mathbb{R}^n \to \mathbb{R} \), \(\text{dom} \ g = \text{dom} \ h = \mathbb{R} \), \(g \) and \(h \) differentiable
 - E.g., \(g(x) = x^T \Sigma x \), \(\Sigma \) psd, \(h(y) = e^y \)
 - Second derivative:
 - \(f''(x) = h''(g(x))g'(x)^2 + h'(g(x))g''(x) \)
 - When is \(f''(x) \geq 0 \) (or \(f''(x) \leq 0 \)) for all \(x \)?

- Example of sufficient (but not necessary) conditions:
 - \(f \) convex if \(h \) is convex and nondecreasing and \(g \) is convex
 - \(f \) convex if \(h \) is convex and nonincreasing and \(g \) is concave
 - \(f \) concave if \(h \) is concave and nondecreasing and \(g \) is concave
 - \(f \) concave if \(h \) is concave and nonincreasing and \(g \) is convex
Composition: scalar, general case

- If \(h: \mathbb{R}^k \rightarrow \mathbb{R} \) and \(g: \mathbb{R}^n \rightarrow \mathbb{R}^k \), when is \(f(x) = h(g(x)) \) convex (concave)?
 - \(\text{dom } f = \{ x \in \text{dom } g | g(x) \in \text{dom } h \} \)

- Simple case: \(h: \mathbb{R} \rightarrow \mathbb{R} \) and \(g: \mathbb{R}^n \rightarrow \mathbb{R} \), general domain and non-differentiable
 - Example of sufficient (but not necessary) conditions:
 - \(f \) convex if \(h \) is convex and \(h \) nondecreasing and \(g \) is convex
 - \(f \) convex if \(h \) is convex and \(h \) nonincreasing and \(g \) is concave
 - \(f \) concave if \(h \) is concave and \(h \) nondecreasing and \(g \) is concave
 - \(f \) concave if \(h \) is concave and \(h \) nonincreasing and \(g \) is convex

- Nondecreasing or nonincreasing condition on extend value extension of \(h \) is fundamental
 - Counter example in the book if nondecreasing property holds for \(h \) but not for \(\tilde{h} \), the composition no longer convex
 - If \(h(x)=x^{3/2} \) with \(\text{dom } h = \mathbb{R}^+ \), convex but extension is not nondecreasing
 - If \(h(x)=x^{3/2} \) for \(x \geq 0 \), and \(h(x)=0 \) for \(x<0 \), \(\text{dom } h = \mathbb{R} \), convex and extension is nondecreasing

Vector composition: differentiable

- If \(h: \mathbb{R}^k \rightarrow \mathbb{R} \) and \(g: \mathbb{R}^n \rightarrow \mathbb{R}^k \), when is \(f(x) = h(g(x)) \) convex (concave)?
 - \(\text{dom } f = \{ x \in \text{dom } g | g(x) \in \text{dom } h \} \)
 - Focus on \(f(x) = h(g(x)) = h(g_1(x), g_2(x), \ldots, g_k(x)) \)
 - Second derivative:
 - \(f''(x) = g'(x)^T \nabla^2 h(g(x)) g'(x) + \nabla h(g(x)) g''(x) \)
 - When is \(f''(x) \geq 0 \) (or \(f''(x) \leq 0 \)) for all \(x \)?

- Example of sufficient (but not necessary) conditions:
 - \(f \) convex if \(h \) is convex and nondecreasing in each argument, and \(g_i \) are convex
 - \(f \) convex if \(h \) is convex and nonincreasing in each argument, and \(g_i \) are concave
 - \(f \) concave if \(h \) is concave and nondecreasing in each argument, and \(g_i \) are concave
 - \(f \) concave if \(h \) is concave and nonincreasing in each argument, and \(g_i \) are convex

- Back to log-sum-exp-positive-weighted-sum-monomials
 - \(\text{dom } f = \mathbb{R}^n_+ \), \(c_i > 0 \), \(a_i \geq 1 \)
 - \(\log \text{ sum exp } \text{ convex} \)
Minimization

- If \(f(x,y) \) is convex in \((x,y) \) and \(C \) is a convex set, then:
 - Norm is convex: \(||x-y|| \)
 - minimum distance to a set \(C \) is convex:

Perspective function

- If \(f \) is convex (concave), then the perspective of \(f \) is convex (concave):
 - \(t > 0, \ g(x,t) = t f(x/t) \)

- KL divergence:
 - \(f(x) = -\log x \) is convex
 - Take the perspective:
 - Sum over many pairs \((x_i,t_i) \)