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Abstract

We present the Conformal Embedding Analysis (CEA)
for feature extraction and dimensionality reduction. Incor-
porating both conformal mapping and discriminating anal-
ysis, CEA projects the high-dimensional data onto the unit
hypersphere and preserves intrinsic neighbor relations with
local graph modeling. Through the embedding, resulting
data pairs from the same class keep the original angle and
distance information on the hypersphere, whereas neigh-
boring points of different class are kept apart to boost dis-
criminating power. The subspace learned by CEA is gray-
level variation tolerable since the cosine-angle metric and
the normalization processing enhance the robustness of the
conformal feature extraction. We demonstrate the effective-
ness of the proposed method with comprehensive compar-
isons on visual classification experiments1.

1. Introduction

Subspace learning and feature extraction are essential
techniques to deal with many practical problems in com-
puter vision and pattern recognition [2]. A common way
to address these objectives is to seek a generalized projec-
tion from the input space to the desired low-dimensional
space, with labeling information when available, such that
the intrinsic data relations are revealed. Traditional tech-
niques, such as Principal Components Analysis (PCA) [8]
and Linear Discriminant Analysis (LDA) [9], and their ker-
nelized variations [23], measure the Euclidean distance be-
tween data points and obtain the global projection via an
optimization formulation assuming the Gaussian distribu-
tion in data space [16]. In general, these approaches are
often based upon the assumption that the training data are
drawn from the same underlying distribution as the testing
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data. Unfortunately, due to the limitation in data collect-
ing and large variations of the sensory inputs, it is usually
hard to guarantee that the training data have these desired
characteristics with statistically sufficient.

Without ignoring the nice linear properties of the tradi-
tional methods, recent studies reveal that local features and
intrinsic geometric structures [17, 11] in the input space
take on more discriminating power for classification. Such
techniques assume that the high-dimensional data can be
considered as a set of geometrically related points lying on a
smooth low-dimensional manifold [7]. Actually, the object
space is usually a sub-manifold of very low dimensionality
embedded in the ambient space. The representative non-
linear manifold learning algorithms, such as Locally Linear
Embedding (LLE) [10], Isomap [12], Laplacian Eigenmaps
(LE) [1], and Semidefinite Programming (SDE) [13], aim at
discovering the geometric properties of the data space. Par-
ticularly, embedding learning is closely related to preserv-
ing the local topological structure of neighborhood connec-
tions. Because it remains a difficult issue to map new data
to the learned manifold space [28], these methods cannot be
easily extended for generalized classification problems.

Recent researches also suggest to use the linear approxi-
mation form for the nonlinear methods in the style of Graph
Embedding (GE) [14], such as Locality Preserving Projec-
tions (LPP) [5], Locally Embedded Analysis (LEA) [3], and
Neighborhood Preserving Embedding (NPE) [6]. The basic
idea is to observe and model the local manifold structure
registered on an affinity graph. However, these algorithms
mainly focus on preserving data localities and similarities
in the manifold space so that the discriminating power can
not be guaranteed sufficiently high. As a result, the pro-
jected data points of different classes may still overlap after
embedding. To overcome this limitation, it has been shown
that the discriminating power can be boosted by Fisher cri-
terion [2] and Kernel trick [23]. Local Discriminant Embed-
ding (LDE) [19] or Locality Sensitive Discriminant Analy-
sis (LSDA) [27] and the 2D/kernel variants achieve good
face recognition accuracy by integrating the information of



neighbor and class relations between data points. Neighbor-
hood Discriminant Projection (NDP) [26] models the data
distribution using both LPP and NPE in accordance with
Fisher criterion. Kernel PCA and Kernel LDA show gen-
erally good performance for face recognition [23]. Other
ways, such as Orthogonal LPP (OLPP) [18], geodesic dis-
tance based LDA [25], and extended Isomap [24], can addi-
tionally enhance the discriminating capability as well.

In addition to the above perspective, we also note that,
in practice, it is often the case that Euclidean metric is in-
capable of capturing the intrinsic similarities between im-
age data points, especially when the gray-level variation
is large, e.g. image underexposed and overexposed cases.
Some recent researches have suggested to estimate local an-
gles and distances for the locally isometric embedding [13].
The basic idea is to support the existence of a rotation, re-
flection and/or translation for the local mapping between
data points and their neighbors. Moreover, for distance met-
ric selection, many classifiers rely on the distances between
the data in the input space.

1.1. Our Approach

Considering the foregoing discussions, we are motivated
to develop a new subspace learning framework, called Con-
formal Embedding Analysis (CEA), by integrating both
conformal embedding nature and discriminating criterion.
In particular, CEA can map the high-dimensional data onto
the unit hypersphere [20, 21] with a local graph modeling so
that the low dimensional representation of the data is pro-
vided with robust discriminating power for pattern classifi-
cation. It is worthwhile to highlight some aspects of CEA
algorithm as follows.

1) CEA is a supervised subspace learning method, which
is provided with good discriminating power by incorporat-
ing the labeling information of neighborhood and class for
each same-class sub-manifold and diff-class sub-manifold.
This property conforms to the Fisher Criterion so as to be
more reliable for multi-class classification problems.

2) Since the high-dimensional data are modelled and em-
bedded with a local affinity graph in the conformal mapping
manner, CEA is based on a different geometric intuition
from traditional methods, and as a result, new properties
are provided for efficient subspace learning and feature rep-
resentation.

3) The subspace learned by CEA is gray-level variation
tolerable since the cosine-angle metric and the normaliza-
tion processing enhance the robustness of the conformal
feature extraction.

In the following sections, we first present the generic for-
mulation of CEA algorithm in section 2, and then justify the
theory in section 3. A kernel version of CEA is formulated
in section 4. We demonstrate the effectiveness of CEA in
section 5 with experiments and conclude the paper at last.

2. Conformal Embedding Analysis

Assume that the given image samples are denoted as
the vector-represented data set {xi ∈ R

D, i = 1, . . . , n}
with high dimensionality and the corresponding class labels
{li ∈ {1, . . . , nc}, i = 1, . . . , n}, where D is equal to the
number of image pixels and each datum xi belongs to a
class li. The basic objective of CEA is to find a low di-
mensional representation {zi ∈ R

d, i = 1, . . . , n} of the
original data with discriminant property through a transfor-
mation function F(·), where d denotes the reduced low di-
mension. For mathematical convenience, we write the orig-
inal data matrix as X = [x1x2 · · ·xn] ∈ R

D×n and the
embedded data matrix as Z = [z1z2 · · · zn] ∈ R

d×n, where
d � D and Z = F(X). The CEA algorithm is stated by
the following steps.

• Preprocessing. Preprocess each of the original image
data {xi}

n
i=1

by some particular image processing al-
gorithms, e.g. histogram equalization, and form the
matrix Y for {yi}

n
i=1

on each column, which is one-
to-one corresponded to {xi}

n
i=1

.

• Normalization. Scale each column vector of Y to be
norm-one to obtain {ỹi}

n
i=1

, where ỹi = yi

‖yi‖
, and

form the normalized D × n matrix Ỹ. Note that ỹi

and xi is one-to-one corresponded for i = 1, . . . , n.

• Constructing Conformal Graph. Define two confor-
mal affinity graphs Gs and Gd both with n nodes. The
i-th node corresponds to the data xi. For Gs, we only
consider each pair of data xi and xj from the same
class with li = lj . An edge is constructed between
nodes i and j if ỹj is among ks largest conformal
neighbors of ỹi and vice versa. For Gd, we only con-
sider each pair of data xi and xj from the different
class with li �= lj . An edge is constructed between
nodes i and j if ỹj is among kd largest conformal
neighbors of ỹi and vice versa. Note that ks and kd

can be different and chosen with empirical values.

• Choosing Conformal Weights. Define the n×n confor-
mal affinity matrix Ws of graph Gs and Wd of graph
Gd. If node i and j are connected, the weight of the
edge between xi and xj is set by wij = w1. Other-
wise, wij = w2 if node i and j are not connected. The
parameter w1 and w2 are defined in the next section.

• Computing Embedded Subspace. Define the D × d

projection matrix P = [p1 . . .pd]. Find the subspace
bases {pi}

d
i=1

as the eigenvectors of

A = (Ỹ(Ds − Ws)Ỹ
T )−1Ỹ(Dd − Wd)ỸT , (1)

where D[i, i] =
∑

j wij , that correspond to the d

largest eigenvalues of A. The conformal embedding
F(xi) of xi is as follows.

xi −→ yi −→ ỹi −→ zi = PT ỹi = F(xi). (2)
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Figure 1. CEA perspective with data normalization.

In the matrix form, we have Z = F(X) = PT Ỹ.

• Largest Conformal Affinity Classification. For a testing
data point xt ∈ R

D, we can project it into the learned
subspace by zt = F(xt). The classification problem
is defined to predict lt := li∗ , satisfying

zi∗ = F(xi∗) = arg max
zi

zT
t zi (3)

3. Theoretical Justifications of CEA

The above transformation from {xi}
n
i=1 to {ỹi}

n
i=1 can

encode the orientation information of vectors xi in the nor-
malized unit vectors ỹi. It projects the original data points
onto a high-dimensional unit hypersphere for gray-level
variation tolerable feature representation. Figure 1 illus-
trates the CEA perspective on a toy data set. Note that the
distance metric is changed from Euclidean to cosine-angle.

Unlike PCA and LDA, our CEA algorithm reflects the
local angle relations between neighboring data based on the
metric of cosine value. On the other hand, we consider the
Fisher Criterion for discriminant embedding, which is not
the similar learning manner in LPP and LEA. To obtain an
embedding for discriminative subspace learning, we have
three aspects of objective. 1) Preserve the same-class con-
formal affinity while keeping away the diff-class conformal
affinity after the embedding. 2) If the two original high-
dimensional data are close (large conformal affinity), then
the embedded low-dimensional points are close as well. 3)
The embedded sub-manifold can better reflect the class re-
lations with respect to the labeling information.

3.1. Conformal Affinity Weights

After preprocessing and normalization, the relationship
of any pair of transformed data can be effectively modelled
by the cosine-angle value of the two vectors on the unit hy-
persphere. Since ỹi and ỹj are both unit vectors, we have
ỹi � ỹj = ‖ỹi‖ · ‖ỹj‖ · cos θij = cos θij , where θij is the
angle between the two vectors. In general, the conformal
affinity distance can be defined by dist(ỹi, ỹj) = 1 − θij .
Hence we have ỹi � ỹj ∈ [−1, 1] and dist(ỹi, ỹj) ∈ [0, 2].
We define 3 optional modes of wij configuration to form
the matrices Ws and Wd in the formulation.

1) Balanced Soft Weights. If node i and j are connected,
the weight of the edge between xi and xj is set by wij =

exp(
−dist(ỹi,ỹj)

t
) = exp(

ỹi�ỹj−1
t

). Otherwise, wij = 0 if
node i and j are not connected.

2) Unbalanced Soft Weights. If node i and j are con-
nected, for Ws, the weight is set by w

(s)
ij = exp(

ỹi�ỹj−1
ts

),

while for Wd, the weight is set by w
(d)
ij = exp(

ỹi�ỹj−1
td

),
where ts and td can be different. Otherwise, wij = 0 if
node i and j are not connected.

3) Balanced Rigid Weights. If node i and j are con-
nected, the weight of the edge between them is set by
wij = 1. Otherwise, wij = 0 if they are not connected.

The Ws and Wd are symmetric and nonnegative matri-
ces which are defined over all data points to model the local
conformal affinity structure of the manifold. The basic cri-
teria is to penalize the distance measure between data via
the weights for the embedding.

3.2. Conformal Discriminant Embedding

The objective function of CEA can be written as,

arg max
p

ε(p) =
n∑

i,j=1

(1 − zi � zj) · w
(d)
ij (4)

subject to

n∑

i,j=1

(1 − zi � zj) · w
(s)
ij = δ, and ‖zi‖ = 1.

where δ is a constant number, such as 1. This formula-
tion essentially couples the neighbor and class information
through the elements of Ws and Wd. To solve the opti-
mization problem, the Eq. 4 can be derived in matrix style
following some algebraic steps.

ε(p) =
n∑

i,j=1

(1− zT
i zj) ·w

(d)
ij =

n∑

i,j=1

(zT
i zi − zT

i zj) ·w
(d)
ij

(5)
Substituting zi and zj with PT ỹi and PT ỹj respectively
according to Eq. 2, we have

ε(P) =
n∑

i,j=1

trace{PT ỹiỹ
T
i P − PT ỹiỹ

T
j P} · w

(d)
ij

= trace{PT (
n∑

i,j=1

ỹiw
(d)
ij ỹT

i −
n∑

i,j=1

ỹiw
(d)
ij ỹT

j )P}

= trace{PT Ỹ(Dd − Wd)ỸT P} (6)

Thus, the objective function and constraint in Eq. 4 are
equivalent to be reformulated as

arg max
P

ε(P) = trace{PT Ỹ(Dd − Wd)ỸT P} (7)

subject to trace{PT Ỹ(Ds − Ws)Ỹ
T P} = δ.



Figure 2. Sample face images from FreyHNU and FreyHNU-V
databases. Each row represents a specific expressional state.

The column vectors {pi}
d
i=1

of projection matrix P can be
obtained by solving the eigenvalue problem

(Ỹ(Dd − Wd)ỸT )p = λ(Ỹ(Ds − Ws)Ỹ
T )p. (8)

Obviously, Ỹ(Dd−Wd)ỸT and Ỹ(Ds−Ws)Ỹ
T are both

positive semidefinite and symmetric matrices. The vectors
{pi}

d
i=1

are the generalized eigenvectors of matrix A in
Eq. 1 corresponding to the d largest eignvalues by solving
the eigen decomposition equation AP = λP with Singu-
lar Value Decomposition (SVD). Once the projection ma-
trix P is calculated from training, any testing datum xt can
be first preprocessed to be yt. Then the normalized datum
ỹt = yt/‖yt‖ can be transformed into zt = PT ỹt. It is
straightforward to implement the largest conformal affinity
classification through the low-dimensional data representa-
tion in the learned subspace.

4. Kernel CEA

To enhance the classification power of the CEA algo-
rithm, we perform the kernel analysis on the preprocessed
and normalized data to explore a new algorithm—Kernel
CEA. The basic idea is to map the preprocessed and nor-
malized data vectors {ỹi}

n
i=1

from the original input space,
R

D, to a higher or even infinite dimensional feature space,
R

F , by a nonlinear mapping function: Φ : R
D → R

F , F >
D. Denote the n × n kernel matrix K in the feature space
R

F by K[i, j] = k(ỹi, ỹj) = Φ(ỹi) �Φ(ỹj). The optimiza-
tion problem of kernel CEA becomes

arg max
Q

ψ(Q) = QT K(Dd − Wd)KQ (9)

subject to QT K(Ds − Ws)KQ = δ.

where δ is a constant number, such as 1. The column vec-
tors {qi}

d
i=1

of projection matrix Q = [q1 . . .qd] can be

Method FreyHNU FreyHNU-V
Error Rate (%) [Dim.] [Dim.]

K-means 15.93 [336] 63.35 [336]
K-W+N+K-means 9.84 [10] 15.06 [100]
CEA+K-means 8.65 [3] 12.29 [100]

Table 1. Face clustering performance on Frey’s faces.

obtained by solving the eigenvalue problem

(K(Dd − Wd)K)q = λ(K(Ds − Ws)K)q. (10)

Considering a test datum ỹt whose projection is Φ(ỹt),
the low-dimensional projection can be formed by zt =∑n

j=1
qjk(ỹj , ỹt), where qj is the entry of column vector

qi. We can choose multi-dimensional subspaces for the ker-
nel embedding.

5. Experiments

For the experiments, we first design a facial image clus-
tering problem for the insight of the gray-level variation tol-
erable property of CEA. The face recognition experiments
on benchmark database ORL are later presented to demon-
strate the discriminating property of CEA.

5.1. Image Clustering

We use Brendan Frey’s 1,965 gray-scale face images
[10, 4] taken from sequential frames of a video for face
clustering test. The images, in a resolution of 28×20, show
variations in face expression and view rotation. All the im-
ages are cropped to the resolution of 24 × 14 with a rect-
angular mask. A professional manually labels each image
with respect to the expressional state and partition the data
into 4 data sets—happy, neutral, unhappy, and others—with
618, 587, 634, and 126 images for each [4]. We choose
the happy, neutral and unhappy data to obtain a specific
database (FreyHNU) for our experiments, which has in to-
tal 1,839 images and 336 dimension (pixels) for each. To
test the CEA property—gray-level variation tolerable, we
also generate another database FreyHNU-V with synthetic
gray-level variation. For each image from FreyHNU, we
scale the gray-level of each pixel with a randomly selected
constant multiplier in [0.8,1.2]. Figure 2 illustrates some
sample face images from the two databases.

We compare the K-means (on original data), Kernel-
Whitening[15]+normalization+K-means, and CEA+K-
means on the two database for 3-class face clustering.
Each centroid is the mean of the points in that cluster,
after normalizing those points to unit Euclidean length.
Table 1 summarizes the clustering error rates, reduced
dimension and performance comparison. As can be seen,
CEA+K-means outperforms the other methods on the
two databases. When the gray-level has large variations,



Figure 3. Sample face images from ORL databases.

CEA+K-means exhibits robust and reliable performance
than the other methods, which infers its gray-level variation
tolerable property.

5.2. Face Recognition

In this section, we evaluate the performance of proposed
CEA for face recognition. Since CEA is a linear subspace
learning method2, we compare it with PCA [8], LDA [9],
LPP [5], and LSDA [27], four most popular linear methods
in face recognition. Here, PCA is unsupervised while the
other four are in supervised manner. We choose the bench-
mark databases ORL to test these algorithms. We use near-
est neighbor classifier for classification. The baseline recog-
nition is performed in the original image space without any
dimensionality reduction.

The ORL [22] database contains in total 400 images of
40 subjects with 10 gray-scale face images for each. The
images show all frontal and slight tilt/rotation of the face
up to 20 degrees. For some subjects, the images were
taken at different times, varying the lighting, facial expres-
sions (open or closed eyes, smiling or not smiling) and w/o
glasses. Figure 3 illustrates 20 sample images of two indi-
viduals in the database. The images are manually aligned,
cropped and resized to 32 × 32, with 256 gray levels per
pixel. The baseline feature of each image is represented by
a 1,024-dimensional column vector.

For face recognition, we perform 7 different database
partitions for cross-validation evaluation. The 7 training
sets are formed by images of each individual with indexes
1-3, 4-6, 7-9, 1-4, 5-8, 1-5, and 6-10. The rest images of
each case form the testing sets. All the comparison methods
are performed on the original image vectors without prior
dimensionality reduction. Table 2 summarizes the recogni-
tion accuracy of baseline, PCA, LDA, LPP, LSDA, CEA
along with the subspace dimension corresponding to the
best performance. It can be seen that CEA consistently out-
performs the other five methods in all the 7 cross-validation
cases with highest accuracy of 91.07%, 89.29%, 92.14%,
95.83%, 95.42%, 96.50%, and 98.00%, respectively. The
dimensions of the 7 CEA subspaces corresponding to the
best results are 33, 34, 67, 43, 43, 49, and 46 respectively.

2Actually the transformation function F (·) is nonlinear because of the
normalization procedure. But, after the preprocessing and normalization,
we still try to learn a linear subspace for data representation.

Since the LDA-like methods have already achieved high
recognition accuracies (86% ∼ 96%) here, the recognition
improvement (1% ∼ 2%) by CEA is sufficiently significant.
Moreover, the latest work LSDA [27] was reported outper-
forming MFA [14] and LDE [19], hence the comparison
of CEA with LSDA is sufficient to validate the superiority
of DSA over these algorithms. Figure 4 shows the plots
of error rate versus dimension of subspace for the seven
cases. It shows that CEA provides a significant improve-
ment for face recognition accuracy with comparative low
dimensional feature representations.

6. Conclusion

We have presented the CEA algorithm that projects the
high-dimensional data onto the unit hypersphere and learns
the embedding with a local graph modeling subject to dis-
criminating criteria and conformal mapping nature. The
feature learned by CEA is gray-level variation tolerable
benefiting from the cosine-angle metric and the normaliza-
tion processing. The effectiveness of our method is demon-
strated by extensive simulation and comparison with image
clustering and face recognition experiments. For future re-
search, we will investigate the tensorization formulation and
its solution for CEA.
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