
Substructural Operational Semantics as Ordered Logic Programming

Frank Pfenning Robert J. Simmons∗

Carnegie Mellon University
{fp,rjsimmon}@cs.cmu.edu

Abstract

We describe a substructural logic with ordered, lin-
ear, and persistent propositions and then endow a frag-
ment with a committed choice forward-chaining opera-
tional interpretation. Exploiting higher-order terms in
this metalanguage, we specify the operational seman-
tics of a number of object language features, such as
call-by-value, call-by-name, call-by-need, mutable store,
parallelism, communication, exceptions and continua-
tions. The specifications exhibit a high degree of uni-
formity and modularity that allows us to analyze the
structural properties required for each feature in iso-
lation. Our substructural framework thereby provides
a new methodology for language specification that syn-
thesizes structural operational semantics, abstract ma-
chines, and logical approaches.

1 Introduction

Substructural logics, of which the most well known
is linear logic, have proven a powerful framework for
describing systems that incorporate a notion of state
and state transition. Linear logic endowed with a
forward-chaining (or “bottom-up”), committed choice
operational semantics can be used to specify state-
ful computations from operational semantics [2, 15] to
greedy algorithms [24]; in fact, both multiset rewriting
and process calculi can be related to linear logic in this
form [3].

In this paper, we describe a forward-chaining, com-
mitted choice operational semantics for a fragment of
ordered logic [21], an extension of intuitionistic linear
logic with ordered hypotheses in the style of the Lam-
bek calculus [8]. Our motivation for doing this is that
it allows us to use ordered logic to specify the substruc-
tural operational semantics of programming languages.
This style of specification, previously considered only

∗This material is based upon work supported under a Na-
tional Science Foundation Graduate Research Fellowship.

for linear logic, is, in ordered logic, a particularly ele-
gant, compact, and modular representation of the se-
mantics of programming languages. Our primary con-
tributions are a sound and nondeterministically com-
plete semantics for a forward-reasoning fragment of or-
dered logic and a new foundation for substructural op-
erational semantics in ordered logic.

We briefly review ordered logic in Section 2. In Sec-
tion 3 we present a fragment of this logic and describe
our sound and non-deterministically complete opera-
tional semantics on this fragment. In Section 4 we
develop substructural operational semantics in ordered
logic and examine the specification of a variety of lan-
guage features in terms of their substructural proper-
ties. We mention some additional related work in Sec-
tion 5 and conclude with a summary and remarks on
future work in Section 6.

While Sections 2 and 3 provide the formal back-
ground for Section 4, the development of substructural
operational semantics can be informally understood in-
dependently of the introduction to ordered logic.

2 Ordered logic

We briefly review a sequent formulation of ordered
logic [22]. The principal judgment has the form
Γ;∆;Ω ` C, where Γ is a context satisfying exchange,
weakening, and contraction, ∆ is a context satisfying
only exchange, and Ω is a context satisfying none of
the three structural principles. The rules for the frag-
ment relevant to this paper are given in Fig. 1. We
use A,B, C to stand for arbitrary propositions and p
for atomic propositions, and write ∆1 ./ ∆2 for the
nondeterministic merge of two linear contexts.

In ordered logic, the linear implication A (B splits
into a left and a right implication, written as A � B
and A � B, respectively. Their right rules add the
hypothesis A to the left and right of the ordered con-
text, respectively. Because of the limited use we make
of implication, we only use right implication, although
we could have just as well used left implication.

Structural Rules

Γ; ·; p ` p
init

ΓLAΓR; ∆; ΩLAΩR ` B

ΓLAΓR; ∆; ΩLΩR ` B
copy

Γ; ∆L∆R; ΩLAΩR ` B

Γ; ∆LA∆R; ΩLΩR ` B
place

Ordered Implication

Γ; ∆;ΩA ` B

Γ; ∆;Ω ` A � B
�R

Γ; ∆A; ΩA ` A Γ; ∆;ΩLBΩR ` C

Γ; ∆ ./ ∆A; ΩL(A � B)ΩAΩR ` C
�L

Conjunction

Γ; ∆A; ΩL ` A Γ; ∆B ; ΩR ` B

Γ; ∆A ./ ∆B ; ΩLΩR ` A •B
•R

Γ; ∆;ΩLABΩR ` C

Γ; ∆;ΩL(A •B)ΩR ` C
•L

Γ; ·; · ` 1
1R

Γ; ∆;ΩLΩR ` C

Γ; ∆;ΩL(1)ΩR ` C
1L

Modalities
Γ; ·; · ` A

Γ; ·; · ` !A
!R

ΓA; ∆; ΩLΩR ` C

Γ; ∆;ΩL(!A)ΩR ` C
!L

Γ; ∆; · ` A

Γ; ∆; · ` ¡A
¡R

Γ; ∆A; ΩLΩR ` C

Γ; ∆;ΩL(¡A)ΩR ` C
¡L

Quantifiers

Γ; ∆;Ω ` A[a/x]

Γ; ∆;Ω ` ∀x.A
∀a

R

Γ; ∆;ΩL(A[t/x])ΩR ` C

Γ; ∆;ΩL(∀x.A)ΩR ` C
∀L

Γ; ∆;Ω ` A[t/x]

Γ; ∆;Ω ` ∃x.A
∃R

Γ; ∆;ΩL(A[a/x])ΩR ` C

Γ; ∆;ΩL(∃x.A)ΩR ` C
∃a

L

Figure 1. Cut-free sequent calculus for a fragment of ordered logic

In addition to the exponential modality !A of linear
logic we have a modality of mobility ¡A that promotes
A from the ordered to the linear context.

For the purposes of this paper, variables are typed
and terms (which are embedded in atomic proposi-
tions) are drawn from the simply-typed λ-calculus. We
generally omit types and type declarations in order to
concentrate on logical structure. We use a to stand for
parameters, which are freshly introduced in the ∀R and
∃L rules.

In this sequent calculus, both cut and identity (that
is ·; ·;A ` A for any A) are admissible [22].

3 Ordered linear logic programming

A fragment of ordered logic can be endowed with
a backward-chaining (or “top-down”) operational se-
mantics (in the style of Prolog) that is sound and non-
deterministically complete with respect to the logic [19,
20]. This so-called uniform fragment [13] is effec-
tively freely generated by all connectives with invert-
ible right rules, and conservatively extends prior work
on linear logic programming by Hodas and Miller [7].
The complexity of resource management in implemen-
tations of ordered logic programming is considerable,
which has so far limited the uniform fragment’s range
of applications. Examples so far have been drawn
mainly from computational linguistics, programming
languages, and imperative algorithms [23, 20, 5].

A different approach to logic programming in gen-
eral is to give a forward-chaining operational seman-

tics. While Horn clauses are simple enough to support
both kinds of semantics, for richer languages appro-
priate fragments have been difficult to isolate. A key
insight, due to Andreoli [1], is that we may freely con-
sider atoms either as negative or positive, correspond-
ing to propositions invertible on the right or left of a se-
quent, respectively. A minimalistic language including
positive connectives (those with invertible left rules)
and atoms admits an interesting and useful forward-
chaining operational semantics for linear logic [24]. In
this section, we extend this to ordered logic and prove
it sound and nondeterministically complete.

3.1 Weak focusing

Focusing reduces nondeterminism from proof search
in three ways: eagerly applying invertible rules, chain-
ing non-invertible rules, and restricting the use of
atoms in initial sequents. For technical reasons it is
convenient to present a system of weak focusing which
forces the chaining of non-invertible rules and restricts
atoms, but does not require invertible rules to be ap-
plied eagerly. Laurent describes the analogous property
in classical linear logic as +-focalization [9].

We consider here only the positive fragment of or-
dered logic which allows us to define rules with a
premise S and a conclusion S′ made up exclusively
from positive propositions. These rules constitute the
logic program and are reflected as logical propositions
with a shallow layer of negative propositions of the form
∀x1 . . .∀xn.S � S′. These considerations yield the fol-

lowing syntax:

Neg. Props. A ::= ∀x.A | S1 � S2

Pos. Props. S ::= p | ¡p | !p | S1 • S2 | 1 | ∃x.S

An atomic proposition p is said to be ordered, an
atomic proposition ¡p is linear (and therefore mobile),
and an atomic proposition !p is persistent. As in previ-
ous work [24], we restrict the use of the ¡ and ! modal-
ities to atomic propositions, and further require sep-
aration: every predicate must be used consistently as
either ordered, linear, or persistent, that is, always oc-
cur as p, ¡p or !p.

The weak focusing system in Fig. 2 uses three forms
of sequents

Unfocused sequent Γ; ∆; Ω ⇒ S′

Left focused sequent Γ; ∆; ΩL[A]ΩR ⇒ S′

Right focused sequent Γ; ∆; Ω ⇒ [S]

where contexts are restricted to

Persistent Hyps. Γ ::= · | ΓA | Γp
Linear Hyps. ∆ ::= · | ∆p
Ordered Pos. Hyps. Ω ::= · | ΩS

and atomic propositions p in Γ, ∆, and Ω must be
persistent, linear, and ordered, respectively. Note that
the rules in Fig. 2 prevent invertible rules from being
applied during focus; the premise and conclusion of 1L,
for instance, are both specifically unfocused sequents.

The init¡ and init! rules combine aspects of the
modality with the initial sequent. This is a slight exten-
sion beyond Andreoli’s focusing system, even on just
the linear fragment. In most focusing systems, it is
critical that the modalities be allowed to interrupt the
focusing phase. This is problematic from the point
of view of our desired operational semantics, because
we will want to require the immediate presence of an
atomic proposition within the ordered, linear, or per-
sistent context as a precondition to applying a rule,
which is precisely what is captured by the init¡ and
init! rules. However, because those rules do not allow
the modalities to break focus, they would be incom-
plete if it were not for the assumption of separation
mentioned above.

The �L rule retains focus in the first premise as
expected, but not in the second because of the implicit
shift operator (in the polarized form S1 � ↑S2, or in
monadic form S1 � {S2} as in CLF [26]).

The soundness of the focusing system is trivial: if
we ignore all the brackets, each rule is derivable in the
ordered sequent calculus. The remainder of this sub-
section is devoted to the completeness theorem.

When we look at an ordinary sequent proof of
Γ;∆;Ω ` S where Γ, ∆, and Ω are drawn from our

fragment, we notice that there are two difficulties. One
is that during the proof, the ordered context may con-
tain not only positive propositions S but also arbitrar-
ily many negative propositions A copied from Γ. The
second difficulty is the usual one: rules must be applied
to the proposition in focus to the exclusion of others.

We need some straightforward structural proper-
ties, where applicable, and the following admissibility
lemma.

Lemma 1 (Unfocused admissibility of •R, ∃R, �L,
and ∀L).

1. If Γ;∆1; Ω1 ⇒ S1 and Γ;∆2; Ω2 ⇒ S2 then
Γ;∆1 ./ ∆2; Ω1Ω2 ⇒ S1 • S2.

2. If Γ;∆1; Ω1 ⇒ S1 and Γ;∆2; ΩLS2ΩR ⇒ S′ for
S1 � S2 ∈ Γ, then Γ;∆1 ./ ∆2; ΩLΩ1ΩR ⇒ S′.

3. If Γ;∆;Ω ⇒ S[t/x] then Γ;∆;Ω ⇒ ∃x. S

4. If Γ;∆;ΩL(A[t/x])ΩR ⇒ S′

then Γ;∆;ΩL(∀x.A)ΩR ⇒ S′.

Proof. We generalize (1) to allow either premise to be
a left-focused sequent and then proceed by mutual si-
multaneous induction on the structure of the two given
derivations.

We generalize (2) to allow the first premise to be
a left-focused sequent and then proceed by mutual in-
duction on the structure of the first given derivation.

Parts (3) and (4) follow similarly.

The property of separation influences how we relate
an unfocused proof to a weakly focused proof in the
completeness theorem. If a positive proposition in an
unfocused sequent (written S∗) is a persistent or linear
atom p, then the focused sequent calculus must add the
prefix “!” or “¡” (this appropriately-prefixed version of
S∗ is written S+). The same goes for an unfocused
ordered context Ω±, which must be separated into a
context of appropriately-prefixed positive propositions
Ω+ and a context of negative propositions Ω−.

Theorem 2 (Completeness of focusing for the positive
fragment). If Γ;∆;Ω± ` S∗ then ΓΩ−;∆;Ω+ ⇒ S+

Proof. By induction on the structure of the given
derivation. We need various simple structural prop-
erties, plus the admissibility of unfocused •R, ∃R, �L

and ∀L rules. In the case of a copy or place rule
we exploit the invertiblity of !L and ¡L, respectively
(Lemma 3). An appeal to invertibility could be avoided
with a slightly more complicated translation that sorts
persistent and linear atoms from Ω± into Γ and ∆,
respectively.

Initial Rules

Γ; ·; p ⇒ [p]
init

Γ; p; · ⇒ [¡p]
init¡

ΓLpΓR; ·; · ⇒ [!p]
init!

Focusing Rules

ΓLAΓR; ∆; ΩL[A]ΩR ⇒ S′

ΓLAΓR; ∆; ΩLΩR ⇒ S′ focusL

Γ; ∆;Ω ⇒ [S′]

Γ; ∆;Ω ⇒ S′ focusR

Ordered Implication

Γ; ∆1; Ω1 ⇒ [S1] Γ; ∆2; ΩLS2ΩR ⇒ S′

Γ; ∆1 ./ ∆2; ΩL[S1 � S2]Ω1ΩR ⇒ S′ �L

Conjunction

Γ; ∆1; ΩL ⇒ [S1] Γ;∆2; ΩR ⇒ [S2]

Γ; ∆1 ./ ∆2; ΩLΩR ⇒ [S1 • S2]
•R

Γ; ∆;ΩLS1S2ΩR ⇒ S′

Γ; ∆;ΩL(S1 • S2)ΩR ⇒ S′ •L
Γ; ·; · ⇒ [1]

1R

Γ; ∆;ΩLΩR ⇒ S′

Γ; ∆;ΩL(1)ΩR ⇒ S′ 1L

Modalities
Γp; ∆; ΩLΩR ⇒ S′

Γ; ∆;ΩL(!p)ΩR ⇒ S′ !L
Γ; ∆p; ΩLΩR ⇒ S′

Γ; ∆;ΩL(¡p)ΩR ⇒ S′
¡L

Quantifiers

Γ; ∆;ΩL[A[t/x]]ΩR ⇒Σ S′

Γ; ∆;ΩL[∀x.A]ΩR ⇒Σ S′ ∀L

Γ; ∆;Ω ⇒Σ [S[t/x]]

Γ; ∆;Ω ⇒Σ [∃x.S]
∃R

Γ; ∆;ΩL(S[a/x])ΩR ⇒Σ,a S′

Γ; ∆;ΩL(∃x.S)ΩR ⇒Σ S′ ∃a
L

Figure 2. Weakly focused sequent calculus; focus propositions shown in [brackets]

3.2 Logic programming semantics

For the operational semantics we need to resolve the
choice of terms t in the ∀L and ∃R rules. It is suffi-
cient for our purposes to utilize a decidable and uni-
tary form of higher-order matching [16]. We must re-
quire all program rules ∀x1 . . .∀xn.S � S′ to be range
restricted : all variables occurring in S′ also have at
least one strict occurrence [16] in S. Moreover, each
universally or existentially quantified variable should
have a strict occurrence in its scope. Together, these
requirements guarantee that if we start with a ground
database of atomic propositions, any matching problem
that arises during forward chaining is decidable, and
any new atomic proposition generated will be ground.

We now rewrite the weakly focused rules in the form
of a state transition system capturing the intended
proof search semantics. A stable sequent is an unfo-
cused sequent Γ; ∆; Ω ⇒ S′ where Ω = Ωp consists
entirely of atomic propositions. Whenever we reach an
unfocused sequent Γ;∆; Ω ⇒ S′ (where Ω may con-
tain arbitrary positive propositions) we decompose the
positive propositions eagerly to reach a stable sequent.
This is possible without losing completeness because
all left rules for positive propositions are invertible.

Lemma 3 (Invertibility). The rules •L, 1L, !L, ¡L,

and ∃L are all invertible.

Proof. In each case we generalize the induction hypoth-
esis to include focused sequents and then prove the the-
orem by mutual induction on the given derivation.

It is also easy to see that the order in which the in-
vertible rules are applied does not matter—the result-
ing stable sequent is always the same, possibly modulo
renaming of the new parameters. Because scope is no
longer obvious, we index a sequent by its parameters
Σ. We write

(Γ;∆;Ω ⇒Σ S′) +−→ (Γ′;∆′; Ωp ⇒Σ′ S′)

if there is a proof

Γ′;∆′; Ωp ⇒Σ′ S′

...
Γ;∆;Ω+ ⇒Σ S′

using only invertible rules •L, 1L, !L, ¡L and ∃L, and
Σ′ extends Σ with new parameters introduced by ap-
plications of the ∃L rule.

Next we define another kind of transition derived
from the focusing phase. We write

(Γ;∆;Ωp ⇒Σ S′) −−→ (Γ;∆′; Ω ⇒Σ S′)

for Ωp = Ωp
LΩp

R if there is a proof

Γ;∆′; Ω ⇒ S′

...
Γ;∆;Ωp

L[A]Ωp
R ⇒ S′

Γ;∆;Ωp
LΩp

R ⇒ S′
focusL

using only the rules acting on left or right focused se-
quents (init, init¡, init!, �L, •R, 1R, ∀L, ∃R). Note
that in all these rules, Γ and S′ remain the same (in
the only or the rightmost premise), and that no new
parameters are introduced.

Finally, we can complete a proof only by successfully
focusing on the right. We write

(Γ;∆;Ωp ⇒Σ S′) →|

if there is a (complete) proof

...
Γ;∆;Ωp ⇒ [S′]
Γ;∆;Ωp ⇒ S′

focusR

We note that this proof stays entirely within right-
focused sequents. In fact, it is decidable if (Γ;∆;Ωp ⇒Σ

S′) →| holds because the required higher-order match-
ing is decidable.

The resulting system of transitions is sound and
complete in the sense of the following theorem. To-
gether with the soundness and completeness of the fo-
cusing system, this yields nondeterministic soundness
and completeness with respect to ordered logic.

Theorem 4 (Nondeterministic completeness).
If the contexts ∆0 and Ω0 contain only ordered proposi-
tions, then Γ0;∆0; Ω0 ⇒Σ0 S′ iff there exists a sequence
of alternating transitions

(Γ0;∆0; Ω0 ⇒Σ0 S′) −−→ (Γ0;∆′
0; Ω

′
0 ⇒Σ0 S′) +−→

(Γ1;∆1; Ω1 ⇒Σ1 S′) −−→ (Γ1;∆′
1; Ω

′
1 ⇒Σ1 S′) +−→

. . .
(Γn;∆n; Ωn ⇒Σn S′)→|

Proof. Soundness is shown by reading the transitions
off a version of the focused proof where all invertible
rules are applied eagerly, according to the invertibility
lemma.

Completeness follows by reconstructing a proof ac-
cording to the definitions of the transitions of the op-
erational semantics.

We want to use the transitions to model computa-
tions of object languages. In this setting, successful ter-
mination is usually not crucial — we are interested in-
stead in the evolution of the state given by the contexts

Γ, ∆, and Ω. From a given initial state (Γ0;∆0; Ω0) and
fixed program in Γ0, we proceed with alternating tran-
sitions as above, ignoring the right-hand side (which
would remain unchanged anyway). We commit to any
transition rather than potentially backtracking in or-
der to capture the possible behavior of an object lan-
guage program rather than exploring all of its behav-
iors (which is an interesting but separate problem). We
terminate if no further transitions are possible. Other
refinements, such as terminating if all further transi-
tions remain in the same state, that is, saturation, can
also be considered, but are not important for the pur-
pose of this paper.

4 Substructural operational semantics

Substructural operational semantics (SSOS) is a
style of defining the operational semantics of program-
ming languages using substructural logics. It has its
origins in some examples illustrating the Concurrent
Logical Framework (CLF) [2] and was proposed as a
specification methodology in an invited talk [15]. Pre-
vious work has considered only frameworks with lin-
ear and affine propositions, and has applied aspects of
substructural operational semantics to functional pro-
gramming [10], to derive program approximations for
functional and imperative languages [25], and to reason
about concurrent computations [27].

In this paper we illustrate the remarkable expressive-
ness of SSOS when we enrich it further by considering
ordered logic as the underlying framework. By giving
the framework the forward-chaining, committed choice
semantics presented in Section 3, the semantic speci-
fications are not only elegant, compact, and modular,
but also executable in a natural way.

The SSOS methodology distinguishes three cate-
gories of atomic propositions. Active propositions are
always ephemeral (ordered or linear), and may be con-
sumed eagerly and replaced with something else. La-
tent propositions represent suspended computations
that await some information or event in order to start
an active computation. Finally, passive propositions ei-
ther hold values or represent events; they do not drive
computation, but they may activate latent proposi-
tions.

4.1 Basic language features

Call-by-value. We start with a call-by-value opera-
tional semantics for the (untyped) λ-calculus. Expres-
sions are represented using higher-order abstract syn-
tax of the form x, lam (λx. e x), and app e1 e2. Meta-
level application is used to represent substitution, as

eval(lam (λx.E x)) � return(lam (λx.E x))
eval(app E1 E2) � comp(app1 E2) • eval(E1)
comp(app1 E2) • return(V1)

� comp(app2 V1) • eval(E2)
comp(app2 (lam (λx.E′

1 x))) • return(V2)
� eval(E′

1 V2)

Figure 3. Call-by-value functions

usual with this representation technique.
We treat the ordered context as a stack of latent

propositions comp(f), where f is a frame, followed by
either an active proposition eval(e), representing the
goal to evaluate e, or a passive proposition return(r),
representing a value being returned.

Frames are either app1 e2, which contains the argu-
ment part of an application and waits for the function
part to be evaluated, or else app2 v1, which contains the
evaluated function part of an application and waits for
the argument part to be evaluated.

The rules are shown in Fig. 3. The free variables in
each rule are implicitly universally quantified over the
whole rule. Note that order is crucial here, because a
frame receives a value from the right, performs some
computation, and then passes the resulting value to the
frame on its left.

Using informal pencil-and-paper representation for
object-language terms (λx.x instead of lam(λx.x)) and
abbreviating comp, eval, and return as c, e, and
r, we show the evaluation of (λx.x)((λy.y)(λz.e)) be-
low. Since the persistent context contains only the logic
program Γ, and the linear context remains empty, we
show only the evolution of the ordered context, where
Ω1

−+−→ Ω2 is short for (Γ; ·; Ω1 ⇒· S′) −−→ (Γ; ·; Ω′
1 ⇒·

S′) +−→ (Γ; ·; Ω2 ⇒· S′) for an arbitrary S′.

e((λx.x)((λy.y)(λz.e))) −+−→
c(app1 ((λy.y)(λz.e))) e(λx.x) −+−→
c(app1 ((λy.y)(λz.e))) r(λx.x) −+−→
c(app2 (λx.x)) e((λy.y)(λz.e)) −+−→

c(app2 (λx.x)) c(app1 (λz.e)) e(λy.y) −+−→
. . .

c(app2 (λx.x)) r(λz.e) −+−→
e(λz.e) −+−→
r(λz.e)

Mutable storage. We now extend the call-by-value
λ-calculus with mutable storage in a completely mod-
ular way, that is, without changing the rules for func-
tions and applications. We have three new source lan-
guage expressions, ref e to allocate a new cell initialized

eval(ref E) � comp(ref1) • eval(E)
comp(ref1) • return(V)

� ∃d. return(loc d) • ¡cell d V

eval(get E) � comp(get1) • eval(E)
comp(get1) • return(loc D) • ¡cell D V

� return(V) • ¡cell D V

eval(set E1 E2) � comp(set1 E2) • eval(E1)
comp(set1 E2) • return(V1)

� comp(set2 V1) • eval(E2)
comp(set2 (loc D1)) • return(V2) • ¡cell D1 V ′

� return(V2) • ¡cell D1 V2

eval(loc D) � return(loc D)

Figure 4. Mutable storage

with the value of e, get e to read the value of the cell de-
noted by e, and set e1 e2 to assign the value of e2 to the
location denoted by e1. Frames ref1, get1, set1 e2 and
set2 v1 that correspond to partially evaluated terms are
also added.

In addition to the stack of frames in the ordered
context followed by eval or return, we now also have
a linear context of the form

cell d1 v1, . . . , cell dn vn

where d1, . . . , dn are pairwise distinct parameters rep-
resenting abstract locations holding values v1, . . . , vn,
respectively. The cell propositions cannot be ordered
because locations may be accessed from any frame.
They cannot be persistent because assignment must
be able to change the value associated with a loca-
tion; this is not possible for persistent propositions,
but is achieved with linear propositions by consuming
the previous value.

We generate a new abstract location (see the rule
for comp(ref1)) by using existential quantification in
the head of a clause, that is, on the right-hand side
of an ordered implication. This will create a fresh pa-
rameter according to the operational semantics of the
metalanguage. Reading a location (see the rule for
comp(get1)) consumes and then restores its content
in one atomic step. Writing to a location (see the rule
for comp(set2)) consumes it and then restores it with
its new value.

The abstract locations created by existential quan-
tification are the first use we have made of destinations,
a distinguishing feature of substructural operational se-
mantics. Destinations are used to connect non-local in-
formation (in the form of passive or latent propositions)
to the active part of the computation (represented by
active propositions).

eval(pair E1 E2)
� comp(pair1) • eval(E1) • eval(E2)

comp(pair1) • return(V1) • return(V2)
� return(pair V1 V2)

eval(split E (λx1.λx2. E
′ x1 x2))

� comp(split1 (λx1.λx2. E
′ x1 x2)) • eval(E)

comp(split1 (λx1.λx2. E
′ x1 x2)) • return(pair V1 V2)

� eval(E′ V1 V2)

Figure 5. Parallel evaluation for pairs

Parallel evaluation. As another modular extension,
we add pairs whose components are evaluated in par-
allel and where both components must be evaluated to
values before a pair of values is formed. The latent
comp(pair1) is waiting here for two values before pro-
ceeding to form the pair and return it. We decompose
such a pair using a construct split e as (x1, x2) in e′,
which is represented by split e (λx1.λx2. e

′ x1 x2) in
higher-order abstract syntax.

This example illustrates that multiple active propo-
sitions (eval) may be in the ordered context at a time.
The committed choice semantics of the metalanguage
will step these propositions in some nondeterministic
order.

eval(new (λx.E x)) � ∃c. eval(E c)

eval(send C E) � comp(send1 C) • eval(E)
comp(send1 C)•return(V) � ¡msg C V •return(V)

eval(rcv C) � comp(await C)
comp(await C) • ¡msg C V � return(V)

Figure 6. Asynchronous communication

Asynchronous communication. As a final mod-
ular extension in this line of examples, we add asyn-
chronous communication. We create a new channel
with new (λx. e x) and bind x to the new channel that
is created by existential quantification. We send the
value of e along a channel x with send c e and receive
it with rcv c. Channels are not first class for the sake
of simplicity, but this could easily be extended.

Here, we add to the linear context new passive
propositions msg c v. These need to be mobile (instead
of ordered) because they may be sent and received from
different frames.

4.2 Alternative evaluation strategies

Having looked at a number of language extensions
that ordered logic programming can treat in a modular
fashion, we will now look at two alternative evaluation

strategies for functions and function application. We
will start with a call-by-name specification and then ex-
tend it, first by using destinations to create an environ-
ment semantics, and then by using linear propositions
to specify call-by-need execution.

eval(lam (λx.E x)) � return(lam (λx.E x))
eval(app E1 E2) � comp(app1 E2) • eval(E1)
comp(app1 E2) • return(lam (λx.E′

1 x))
� eval(E′

1 E2)

Figure 7. Call-by-name functions

Call-by-name substitution semantics. The call-
by-name specification in Fig. 7 is similar to the call-by-
value specification in Fig. 3, but instead of creating an
app2 frame when the function is returned to the frame
app1 e2 containing the waiting argument, we imme-
diately substitute the expression e2 into the function
body.

eval(lam (λx.E x)) � return(lam (λx.E x))
eval(app E1 E2) � comp(app1 E2) • eval(E1)
comp(app1 E2) • return(lam (λx.E′

1 x))
� ∃d2.eval(E′

1 d2) • !bind d2 E2

eval(D) • !bind D E � eval(E)

Figure 8. Call-by-name with destinations for
variable binding

Call-by-name environment semantics. We mod-
ify this specification of call-by-name evaluation to use
destinations for binding in Fig. 8. There are only two
changes from the specification in Fig. 7. The first
change affects the third rule. Instead of substituting an
expression e2 into the function that is being returned
to the app1 frame, we generate a new parameter d2,
substitute that into the function that is being returned
to the app1 frame, and then create a new persistent
proposition bind d2 e2 that associates our new desti-
nation with the expression e2.

In this semantics, then, the persistent context Γ will
contain propositions

bind d1 e1, . . . ,bind dn en

binding pairwise distinct destinations to expressions.
This context represents the environment of evaluation.

We now are working with expressions containing
destinations, and so our second change is to add a rule
that specifies how we evaluate a bare parameter. This
is done by the last rule in Fig. 8. Whenever we reach
a parameter d, we know that that parameter is associ-
ated with an expression by some persistent proposition

bind d e, so we switch from evaluating the parameter
to evaluating the associated expression.

This is the first time we have needed a persistent
predicate (bind). A binding is never updated, and may
be read more than once or not at all, so the persistent
context has exactly the right properties to hold it.

eval(lam (λx.E x)) � return(lam (λx.E x))

eval(app E1 E2) � comp(app1 E2) • eval(E1)
comp(app1 E2) • return(lam (λx.E′

1 x))
� ∃d2. eval(E′

1 d2) • ¡susp d2 E2

eval(D) • ¡susp D E � comp(bind1 D) • eval(E)
comp(bind1 D)•return(V) � return(V)•!bind D V
eval(D) • !bind D V � return(V)

Figure 9. Call-by-need functions

Call-by-need. The example in Fig. 9 further modi-
fies the environment semantics for the call-by-need lan-
guage. The goal in a call-by-need semantics is to eval-
uate the argument to a function at most once, and only
if needed. Whereas before we associated destinations
with persistent propositions bind d e, we now asso-
ciate them with either a linear proposition susp d e
if the argument has not been evaluated or else a per-
sistent proposition bind d v if the argument has been
evaluated.

The first time we try to evaluate a destination (first
rule for eval(D)) we force the suspension and install
a frame noting to bind the destination to the result-
ing value. The suspension is linear (and therefore con-
sumed when forced), but the eventual value binding is
persistent and will apply to any further reference to
D. In this specification, computation gets stuck when
a so-called black hole is encountered, because neither
of the two eval(D) clauses applies. We could extend
this specification to explicitly detect such a condition
and signal an error.

The six lines in the specification represent a com-
plete specification of call-by-need, exploiting order, lin-
earity, and persistence in a pleasing and elegant way.
It is consistent with published specifications [11].

4.3 Advanced control with destinations

As a last set of example we consider some advanced
control constructs, first exceptions and then first-class
continuations. Both violate of the modularity we have
sought in the previous examples to different degrees, in-
dicating that adding control constructs to SSOS spec-
ifications may involve non-local revisions.

eval(try E1 E2) � catch(E2) • eval(E1)
eval(raise) � fail
comp(F) • fail � fail
catch(E2) • fail � eval(E2)
catch(E2) • return(V) � return(V)

Figure 10. Exceptions in a sequential lan-
guage

Exceptions. For simplicity, we only consider one ex-
ception which is generated by the raise expression and
does not carry a value. try e1 e2 evaluates e1 and re-
turns its value if successful. If evaluating e1 fails, it
evaluates e2 instead and returns its value. The raising
of an exception is modeled by a new passive, ordered
proposition fail which is percolated up the stack by all
frames except by a new latent proposition catch.

Exceptions entail a certain violation of modularity if
the language specification requires latent propositions
waiting on more than one result, as, for example, in
parallel evaluation of pairs (Fig. 5).

eval D (lam (λx.E x)) � return D (lam (λx.E x))
eval D (app E1 E2)

� ∃d1. ¡comp D (app1 E2) d1 • eval d1 E1

¡comp D (app1 E2) D1 • return D1 V1

� ∃d2. ¡comp D (app2 V1) d2 • eval d2 E2

¡comp D (app2 (lam (λx.E′
1 x)) D2 • return D2 V2

� eval D (E′
1 V2)

Figure 11. Call-by-value in linear destination-
passing style

Linear destinations for threading frames. Look-
ing ahead, we will have to modify our attitude regard-
ing the stack of frames in the ordered context when try-
ing to handle first-class continuations. The difficulty is
that the frames on the stack represent the continua-
tion, and when continuations are first-class they may
be ignored or used multiple times which goes against
the nature of the ordered context.

As a first step, we show how we can represent the
stack in the linear context by explicitly threading the
frames using destinations. In fact, before the availabil-
ity of the ordered context, SSOS specifications essen-
tially all used this technique.

The active proposition eval d e now takes two argu-
ments: the first is a destination d for its value (which
will be a parameter) and the second the expression e
to evaluate. Similarly, return d v returns value v to
destination d. Latent comp propositions have two des-
tinations: one on which they receive a value, and one

to which they pass their value; this allows order to be
recreated with a linked-list structure. Because eval
and return as well as comp now thread destinations,
all three may be mobile. However, it is only important
that frames be mobile, so we leave eval and return as
the only ordered propositions.

eval D (callcc (λx.E x)) � eval D (E (cont D))
eval D (throw E1 E2)

� ∃d1. !comp D (throw1 E2) d1 • eval d1 E1

!comp D (throw1 E2) D1 • return D1 V1

� ∃d2. !comp D (throw2 V1) d2 • eval d2 E2

!comp D (throw2 (cont D′)) D2 • return D2 V2

� return D′ V2

eval D (cont D′) � return D (cont D′)

Figure 12. First-class continuations

First-class continuations. Linear destinations al-
low continuations to be represented by a destination
that points to the top of a stack. To introduce first-
class continuations into our language, we define two
new source constructs. The expression callcc (λx. e x)
captures the current continuation and substitutes it for
x, and the expression throw e1 e2 throws the value of
e2 to the continuation designated by e1.

This turns out to be quite simple, but it is not mod-
ular with respect to the preceding call-by-value speci-
fication in linear destination passing style. Languages
with first-class continuations may return to a partic-
ular frame multiple times, but our previous specifica-
tions consumed comp propositions as soon as a passive
return proposition interacted with them. By making
continuations persistent, they can be invoked multiple
times.

5 Additional related work

Much of the most closely related work is mentioned
in-line where appropriate. Regarding the logic pro-
gramming semantics, an interesting related system is
MultiSet Rewriting (MSR) which has been used to an-
alyze security protocols and concurrency in general [3].
It entirely abandons the goal on the right-hand side and
works only with linear and persistent contexts, which is
similar to our operational semantics. We add ordered
contexts to significantly extend the expressive power,
as demonstrated by our SSOS specifications.

The work also owes a great deal to Chirimar’s linear
specifications of operational semantics [4], although the
underlying fragment of classical linear logic has, to our
knowledge, never received a satisfactory operational in-
terpretation.

One can also take an algebraic attitude towards con-
texts, thinking, for example, of the ordered context
ABC as the term A•B •C where “•” is an associative
operator, and similarly for the linear context. This is
close to the attitude taken by rewriting logic semantics
[12]; the latent state that is captured by the ordered
and persistent contexts in our work can be encoded
within a “soup” of state attributes in rewriting logic
specifications. To our knowledge, frameworks based
on higher-order rewriting lack support for higher-order
abstract syntax but have more sophisticated support
for reasoning about equality. It is interesting future
work to consider how to combine the strengths of both
approaches, especially in considering the use of equali-
ties for semantic approximation [25].

Structural operational semantics (SOS) [18] is an
ancestor and inspiration for substructural operational
semantics, also taking an algebraic view. It is diffi-
cult, however, to achieve the kind of modularity we
achieve here since the state is reified as a term, and
persistence is somewhat awkward to model. Modular-
ity can be recovered in Modular SOS [14] using vari-
ables standing for unspecified future extensions; here
modularity stems essentially from monotonicity of log-
ical inference.

The simpler substructural specifications, for exam-
ple, for call-by-value functions, can be seen as isomor-
phic to stack-based abstract machines, although ex-
pressed in logical and more localized form. This anal-
ogy may be more difficult to maintain for the more
complex specifications. We view our method a syn-
thesis of ideas behind structural operational semantics,
abstract machines, and logical specifications.

6 Conclusion

We have presented a fragment of ordered logic, in-
corporating ordered, linear, and persistent contexts,
that allows a forward-chaining committed choice op-
erational interpretation which is both sound and non-
deterministically complete. Additionally exploiting a
higher-order term language, we illustrate its expressive
power by giving elegant, concise, and to some degree
modular specifications of various program language
constructs in the style of substructural operational se-
mantics, ranging from simple call-by-value functions
to first-class continuations, mutable store, and asyn-
chronous communication. The examples are not ex-
haustive but, we hope, instructive.

In ongoing work, we are developing an implemen-
tation of the ordered logic programming language in
order to experiment with SSOS specifications that ex-

ploit the notion of order described here.1

We believe that the backward-chaining, backtrack-
ing semantics for the negative fragment [19] can be
profitably combined with the forward-chaining, com-
mitted choice semantics presented here for a very rich
fragment of ordered logic, generalizing LolliMon [10]
and CLF [26, 2]. At present some difficult questions
remain regarding the interface between the two di-
rections. The first-cut solutions proposed and imple-
mented in LolliMon have proved to be inadequate in
some cases.

Another long-term goal of ours is to exploit the el-
egance and uniformity of the SSOS specifications to
derive principles for metareasoning so we can mechan-
ically establish properties such as type preservation,
progress, bisimulation, etc., perhaps along the lines of
work on Twelf [17] and Abella [6].

Acknowledgements. We would like to thank the
anonymous reviewers for their comments, Jason Reed
for a key insight in the proof of completeness, and
Noam Zeilberger for pointing us to Laurent’s unpub-
lished note [9].

References

[1] J.-M. Andreoli. Logic programming with focusing
proofs in linear logic. J. Log. Comput., 2(3):297–347,
1992.

[2] I. Cervesato, F. Pfenning, D. Walker, and K. Watkins.
A concurrent logical framework II: Examples and ap-
plications. Technical Report CMU-CS-02-102, School
of Computer Science, Carnegie Mellon University,
Mar. 2002. Revised May 2003.

[3] I. Cervesato and A. Scedrov. Relating State-Based
and Process-Based Concurrency through Linear Logic.
Information & Computation, 2009.

[4] J. L. Chirimar. Proof Theoretic Approach to Specifi-
cation Languages. PhD thesis, University of Pennsyl-
vania, May 1995.

[5] A. P. Felty and A. Momigliano. Hybrid: A definitional
two-level approach to reasoning with higher-order ab-
stract syntax. CoRR, abs/0811.4367, 2008.

[6] A. Gacek. The Abella interactive theorem prover. In
IJCAR’08, pages 154–161. Springer, 2008. System de-
scription.

[7] J. S. Hodas and D. Miller. Logic programming in a
fragment of intuitionistic linear logic. Inf. Comput.,
110(2):327–365, 1994.

[8] J. Lambek. The mathematics of sentence structure.
American Mathematical Monthly, 65:363–386, 1958.

[9] O. Laurent. A proof of the focalization property of
linear logic, May 2004. Unpublished note.

1More examples and a prototype implementation are available
at http://www.cs.cmu.edu/∼rjsimmon/ssos/

[10] P. López, F. Pfenning, J. Polakow, and K. Watkins.
Monadic concurrent linear logic programming. In
PPDP 2000, pages 35–46, 2005.

[11] J. Maraist, M. Odersky, and P. Wadler. A call-by-need
lambda calculus. Journal of Functional Programming,
8(3):275–317, May 1998.

[12] J. Meseguer and G. Roşu. The rewriting logic seman-
tics project. In SOS 2005, pages 26–56, May 2006.

[13] D. Miller, G. Nadathur, F. Pfenning, and A. Scedrov.
Uniform proofs as a foundation for logic programming.
Ann. Pure Appl. Logic, 51(1-2):125–157, 1991.

[14] P. D. Mosses. Modular structural operational seman-
tics. J. Log. Algebr. Program., 60-61:195–228, 2004.

[15] F. Pfenning. Substructural operational semantics and
linear destination-passing style. In APLAS 2004, page
196, Taipei, Taiwan, 2004. Springer. Abstract of in-
vited talk.

[16] F. Pfenning and C. Schürmann. Algorithms for equal-
ity and unification in the presence of notational defi-
nitions. In Types for Proofs and Programs, pages 179–
193, 1998.

[17] F. Pfenning and C. Schürmann. System description:
Twelf — a meta-logical framework for deductive sys-
tems. In CADE-16, pages 202–206, Trento, Italy, 1999.
Springer.

[18] G. D. Plotkin. A structural approach to operational se-
mantics. J. Log. Algebr. Program., 60-61:17–139, 2004.

[19] J. Polakow. Linear logic programming with ordered
contexts. In PPDP 2000, pages 68–79, Montreal,
Canada, Sept. 2000. ACM Press.

[20] J. Polakow. Ordered Linear Logic and Applications.
PhD thesis, Carnegie Mellon University, Aug. 2001.
Available as technical report CMU-CS-01-152.

[21] J. Polakow and F. Pfenning. Natural deduction for
intuitionistic non-commutative linear logic. In TLCA
1999, pages 295–309, L’Aquila, Italy, 1999. Springer-
Verlag LNCS 1581.

[22] J. Polakow and F. Pfenning. Relating natural de-
duction and sequent calculus for intuitionistic non-
commutative linear logic. In MFPS XV, Apr. 1999.
Electr. Notes Theor. Comput. Sci., 20:449–466.

[23] J. Polakow and K. Yi. Proving syntactic properties of
exceptions in an ordered logical framework. In APLAS
2000, pages 23–32, 2000.

[24] R. J. Simmons and F. Pfenning. Linear logical algo-
rithms. In ICALP (2), pages 336–347, 2008.

[25] R. J. Simmons and F. Pfenning. Linear logical ap-
proximations. In PEPM 2009. ACM Press, 2009.

[26] K. Watkins, I. Cervesato, F. Pfenning, and D. Walker.
A concurrent logical framework I: Judgments and
properties. Technical Report CMU-CS-02-101, School
of Computer Science, Carnegie Mellon University,
Mar. 2002. Revised May 2003.

[27] K. Watkins, I. Cervesato, F. Pfenning, and D. Walker.
Specifying properties of concurrent computations in
CLF. Electr. Notes Theor. Comput. Sci., 199:67–87,
2008.

