Automata Theory: Solutions 6

Problem 1
Demonstrate that, if \(L_1 \) is a regular language on the alphabet \(\Sigma = \{a, b\} \), then the following subset of \(L_1 \) is also a regular language:

\[
L_2 = \{w : w \in L_1 \text{ and } w \text{ includes at least one } b\}.
\]

Consider the language \(L_3 \) defined by the expression \(a^* \); since we describe \(L_3 \) by a regular expression, it is a regular language. This language includes all strings that have no \(b \), and we can express \(L_2 \) as follows:

\[
L_2 = L_1 - L_3.
\]

Thus, \(L_2 \) is the difference of two regular languages, which implies that it is also regular.

Problem 2
Argue that the language \(\{a^n b^{2n} : n \geq 0\} \) is not regular.

We suppose that the language is regular and derive a contradiction. If this language is regular, there is some \(m \)-state DFA that accepts it, where \(m \) is an unknown fixed number.

Suppose that we begin from the initial state of the DFA and trace the path for each of the following strings: \(a^0, a^1, a^2, \ldots, a^m \). Since the total number of these strings is \(m + 1 \), two of them must lead to the same state; we denote these two strings \(a^i \) and \(a^j \) (see the picture).

Since the automaton accepts the string \(a^i b^{2i} \), this string must lead from the initial state to a final state, as shown in the picture. Then, the string \(a^j b^{2i} \) leads to the same final state, contradicting the fact that \(a^j b^{2i} \) is not in the language.