Analysis of Algorithms: Solutions 9

The histogram shows the distribution of grades for the homeworks submitted on time.

Problem 1
Write pseudocode of an algorithm GREEDY-KNAPSACK(W, v, w, n) for the 0-1 Knapsack Problem, and give its running time. The arguments are an weight limit W, array of item values v[1..n], and array of item weights w[1..n]. Your algorithm must use the greedy strategy described in class, and return the set of selected items.

GREEDY-KNAPSACK(W, v, w, n)

sort items in the descending order of the \(\frac{v[i]}{w[i]} \) ratios

\(\text{items} \leftarrow \emptyset \) \> Set of selected items.
\(\text{w-sum} \leftarrow 0 \) \> Sum of their weights.

\(\text{for } i \leftarrow 1 \text{ to } n \) \> In sorted order.
 \(\text{do if } \text{w-sum} + w[i] \leq W \)
 \(\text{then } \text{items} \leftarrow \text{items} \cup \{i\} \)
 \(\text{w-sum} \leftarrow \text{w-sum} + w[i] \)

\text{return } \text{items}

The sorting takes \(O(n \lg n) \) time, whereas the selection loop runs in linear time. Thus, the complexity of \text{GREEDY-KNAPSACK} is \(O(n \lg n) \).
Problem 2
Using Figure 17.4(b) in the textbook as a model, draw an optimal-code tree for the following set of characters and their frequencies:

\[
\begin{align*}
&\text{a:1 b:1 c:2 d:3 e:5 f:8 g:13 h:21}
\end{align*}
\]

![Optimal Code Tree](image)

Problem 3
Suppose that you drive along some road, and you need to reach its end. Initially, you have a full tank, which holds enough gas to cover a certain distance \(d \). The road has \(n \) gas stations, where you can refill your tank. The distances between gas stations are represented by an array \(A[1..n] \), and the last gas station is located exactly at the end of the road. You wish to make as few stops as possible along the way. Give an algorithm \textsc{Choose-Stops}(d, A, n) that identifies all places where you have to refuel, and returns the set of selected gas stations.

\textsc{Choose-Stops}(d, A, n)

\begin{align*}
\text{stations} &\leftarrow \emptyset \quad \triangleright \text{Set of selected gas stations.} \\
\text{d-left} &\leftarrow d \quad \triangleright \text{Distance that corresponds to the remaining gas.} \\
\text{for } i &\leftarrow 1 \text{ to } n \\
&\quad \text{do if } d-left < A[i] \quad \triangleright \text{Cannot reach the next gas station? Then refuel.} \\
&\hspace{1cm} \text{then stations} \leftarrow \text{stations} \cup \{i - 1\} \\
&\hspace{1cm} \text{d-left} \leftarrow d \\
&\hspace{1cm} \text{d-left} \leftarrow d-left - A[i] \quad \triangleright \text{Drive to the next station.} \\
\text{return stations}
\end{align*}

The algorithm runs in linear time, that is, its complexity is \(\Theta(n) \).
Problem 4
Suppose that the weights of all items in the 0-1 Knapsack Problem are integers, and the weight limit W is also an integer. Design an algorithm that finds a globally optimal solution, and give its time complexity in terms of the number of items n and weight limit W.

We use dynamic programming with two arrays, $\textit{item}[1..W]$ and $\textit{value}[0..W]$, which are indexed on the size of a knapsack. For every size i between 0 and W, we compute the maximal value of items that can be loaded into a knapsack, and store this result in $\textit{value}[i]$. If $\textit{value}[i]$ is larger than $\textit{value}[i-1]$, then $\textit{item}[i]$ is the last added item; otherwise, $\textit{item}[i]$ is 0.

We add items in their numerical order; that is, if items j_1 and j_2 must be in the knapsack, and $j_1 < j_2$, then we add j_1 before j_2.

The following algorithm computes the arrays $\textit{item}[1..W]$ and $\textit{value}[0..W]$, and returns the maximal value of items for size W; its time complexity is $\Theta(nW)$.

Dynamic-Knapsack(W, v, w, n)

\[\textit{value}[0] \leftarrow 0 \]

for $i \leftarrow 1$ to W // Consider every size of a knapsack.

\[\textit{do item}[i] \leftarrow 0 \]

\[\textit{value}[i] \leftarrow \textit{value}[i-1] \] // Initialize the maximal value for size i.

for $j \leftarrow 1$ to n // Look through items, to find the best addition to a smaller load.

\[\textit{do if w}[j] \leq i \] // Item j fits into the knapsack.

\[\textit{and j > item}[i - \textit{w}[j]] \] // It does not violated the numerical order.

\[\textit{and value}[i] < \textit{value}[i - \textit{w}[j]] + v[j] \] // We get a good value by adding j.

\[\textit{then item}[i] \leftarrow j \] // Add j to the knapsack.

\[\textit{value}[i] \leftarrow \textit{value}[i - \textit{w}[j]] + v[j] \]

return $\textit{value}[W]$

We also need an algorithm for printing out the list of selected items. The following output procedure uses the array $\textit{item}[1..W]$, built by **Dynamic-Knapsack**, to print items in their numerical order; its running time is $O(n)$.

Print-Knapsack(\textit{item}, W, w, i)

\[\textit{if} i = 0 \]

\[\textit{then} \text{“do nothing”} \]

\[\textit{elseif item}[i] = 0 \]

\[\textit{then Print-Knapsack}(\textit{item}, W, w, i - 1) \]

\[\textit{else Print-Knapsack}(\textit{item}, W, w, i - \textit{w}[item[i]]) \]

\[\text{print item[i]} \]