Analysis of Algorithms: Solutions 8

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td>number of</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>homeworks</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
</tbody>
</table>

The histogram shows the distribution of grades for the homeworks submitted on time.

Problem 1
Using Figure 16.2 in the textbook as a model, draw the recursion tree for the MERGE-SORT procedure on a sixteen-element array. Explain why dynamic programming is ineffective for speeding up MERGE-SORT.

The MERGE-SORT procedure does *not* have overlapping subproblems, that is, all nodes of the recursion tree are distinct. We cannot re-use the results of recursive calls and, hence, dynamic programming does not improve the efficiency.
Problem 2
Determine a longest common subsequence of \(\langle 1, 0, 0, 1, 0, 1 \rangle\) and \(\langle 0, 1, 0, 1, 1, 0, 1, 1 \rangle\). Using Figure 16.3 in the book as a model, draw the table constructed by the LCS-LENGTH algorithm for these two sequences (you do not need to show arrows in your table).

The longest common subsequences are \(\langle 0, 0, 1, 0, 1 \rangle, \langle 1, 0, 1, 0, 1 \rangle,\) and \(\langle 1, 0, 0, 1, 1 \rangle\). The table computed by LCS-LENGTH is as follows:

\[
\begin{array}{c|cccccccc}
6 & 0 & 1 & 2 & 3 & 4 & 4 & 5 & 5 \\
5 & 0 & 1 & 2 & 3 & 3 & 4 & 4 & 4 \\
4 & 0 & 1 & 2 & 2 & 3 & 3 & 4 & 4 \\
3 & 0 & 1 & 1 & 2 & 2 & 2 & 2 & 3 & 3 \\
2 & 0 & 1 & 1 & 2 & 2 & 2 & 2 & 2 \\
1 & 0 & 0 & 1 & 1 & 1 & 1 & 1 & 1 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline
& 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8
\end{array}
\]

Problem 3
Write an algorithm INCREASING-LENGTH\((A, n)\) that determines the length of a longest increasing subsequence of an array \(A[n]\).

Let \(d[i]\) denote the length of a longest increasing subsequence whose last element is \(A[i]\). For example, suppose that \(A = \langle 1, 2, 1, 2, 3 \rangle\) and \(i = 3\); then, the longest increasing subsequence that ends at \(A[3]\) is \(\langle 1, 1 \rangle\), which implies that \(d[3] = 2\).

Observe that this subsequence contains at least one element and, hence, \(d[i] \geq 1\). Furthermore, if \(j < i\) and \(A[j] \leq A[i]\), then \(d[i] \geq d[j] + 1\), because we may construct a \((d[j] + 1)\)-element increasing subsequence that ends at \(A[i]\), by adding \(A[i]\) to the longest increasing subsequence that ends at \(A[j]\). These observations lead to the following algorithm, whose running time is \(\Theta(n^2)\):

\text{INCREASING-LENGTH\((A, n)\)}
\begin{verbatim}
 d-max \leftarrow 0
 for i \leftarrow 1 \text{ to } n
 do d[i] \leftarrow 1
 for j \leftarrow 1 \text{ to } i - 1
 do if A[i] \geq A[j] \text{ and } d[i] < d[j] + 1
 then d[i] \leftarrow d[j] + 1
 if d-max < d[i]
 then d-max \leftarrow d[i]
 return d-max
\end{verbatim}