Algorithms: Solutions 3

The histogram shows the distribution of grades.

Problem 1
Determine asymptotic upper and lower bounds for each of the following recurrences.

(a) \(T(n) = T(n/6) + T(n/3) + T(n/2) + n. \)

We use the iteration method, which leads to the following tree:

The summation gives an upper and lower bound for \(T(n) \):

\[n \cdot \log_6 n \leq T(n) \leq n \cdot \log_2 n, \]

which implies that

\[T(n) = \Theta(n \cdot \log n). \]
(b) \(T(n) = T(n - 1) + n. \)

\[
T(n) &= T(n - 1) + n \\
&= T(n - 2) + (n - 1) + n \\
&\quad \vdots \\
&= 1 + 2 + 3 + \ldots + (n - 1) + n \\
&= \frac{n(n + 1)}{2} \\
&= \Theta(n^2)
\]

(c) \(T(n) = T(n - 1) + 1/n. \)

\[
T(n) &= T(n - 1) + \frac{1}{n} \\
&= T(n - 2) + \frac{1}{n - 1} + \frac{1}{n} \\
&\quad \vdots \\
&= 1 + \frac{1}{2} + \frac{1}{3} + \ldots + \frac{1}{n - 1} + \frac{1}{n} \\
&= \ln n + O(1) \quad \Rightarrow \text{using Equality 3.5 from the textbook} \\
&= \Theta(\log n)
\]

(d) \(T(n) = T(\sqrt{n}) + 1. \)

We “unwind” the recurrence until reaching some constant value of \(n \), e.g. until \(n \leq 2: \)

\[
T(n) = \begin{cases}
\Theta(1) & \text{if } n \leq 2 \\
T(\sqrt{n}) + 1 & \text{if } n > 2
\end{cases}
\]

For convenience, assume that \(n = 2^{2^k} \), for some natural value \(k \):

\[
T(n) &= 1 + T(\sqrt{2^{2^k}}) \\
&= 1 + T(2^{2^{k-1}}) \\
&= 1 + 1 + T(\sqrt{2^{2^{k-1}}}) \\
&= 1 + 1 + T(2^{2^{k-2}}) \\
&= 1 + 1 + 1 + T(\sqrt{2^{2^{k-2}}}) \\
&= 1 + 1 + 1 + T(2^{2^{k-3}}) \\
&\quad \vdots \\
&= 1 + 1 + 1 + \ldots + 1 + T(2) \quad \Rightarrow \text{the sum is of length } k \\
&= k + \Theta(1) \\
&= \Theta(k)
\]

Finally, note that \(k = \log \log n \) and, hence,

\[
T(n) = \Theta(\log \log n).
\]
(e) \(T(n) = \sqrt{n} \cdot T(\sqrt{n}) + n. \)

We assume for convenience that \(n = 2^k \) and \(T(4) = 4 \), and use induction to prove the following equality:

\[
T(2^k) = 2^k \cdot k.
\]

This equality holds for \(k = 1 \):

\[
T(2^1) = T(4) = 4 = 2^1 \cdot 1,
\]

and the induction step is as follows:

\[
T(2^{k+1}) = \sqrt{2^{2k+1}} \cdot T(\sqrt{2^{2k+1}}) + 2^{2^{k+1}}
= 2^k \cdot T(2^k) + 2^{2^{k+1}}
= 2^k \cdot (2^k \cdot k) + 2^{2^{k+1}}
= (2^k)^2 \cdot k + 2^{2^{k+1}}
= 2^{2k+1} \cdot k + 2^{2^{k+1}}
= 2^{2k+1} \cdot (k + 1)
\]

We now note that \(k = \log_2 \log n \), which implies that

\[
T(n) = n \cdot \log_2 \log n.
\]

Problem 2

The standard analysis of MERGE-SORT\((A, p, q)\) is based on the assumption that we pass \(A[1..n] \) by a pointer. If a language does not allow passing an array by a pointer, we may have two other options; for each option, determine the running time of MERGE-SORT.

(a) Copy all elements of the array \(A[1..n] \), which takes \(\Theta(n) \) time.

Let \(n \) be the size of the array \(A[1..n] \), and \(m \) be the size of the segment \(A[p..q] \), sorted by the recursive call MERGE-SORT\((A, p, q)\). The time of copying the array is \(\Theta(n) \), and the time of the MERGE operation is \(\Theta(m) \), which leads to the following recurrence:

\[
T(m) = 2 \cdot T(m/2) + \Theta(n) + \Theta(m).
\]

Since \(m \leq n \), we conclude that

\[
T(m) = 2 \cdot T(m/2) + \Theta(n) = 2 \cdot T(m/2) + c \cdot n,
\]

and unwind this recurrence as follows:

\[
T(m) = 2 \cdot T(m/2) + c \cdot n
= 4 \cdot T(m/4) + 2 \cdot c \cdot n + c \cdot n
= 8 \cdot T(m/8) + 2^2 \cdot c \cdot n + 2 \cdot c \cdot n + c \cdot n
\]

\[
\ldots
= 2^{\log m} \cdot c \cdot n + 2^{\log m-1} \cdot c \cdot n + \ldots + 2^2 \cdot c \cdot n + 2 \cdot c \cdot n + c \cdot n
= (2^{\log m+1} - 1) \cdot c \cdot n
= (2 \cdot m - 1) \cdot c \cdot n
= \Theta(m \cdot n)
\]
Thus, the running time of $\text{MERGE-SORT}(A, p, q)$ is $\Theta(m \cdot n)$, where m is the size of the segment $A[p..q]$. The top-level call to the sorting algorithm is $\text{MERGE-SORT}(A, 1, n)$; for this call, we have $m = n$, which means that the time complexity is

$$T(n) = \Theta(n^2).$$

(b) Copy the elements of the segment $A[p..q]$, which takes $\Theta(q - p + 1)$ time.

The complexity of copying the segment is $\Theta(m)$, which is the same as the time of the MERGE procedure; hence, copying does not affect the complexity of the algorithm. The recurrence is the same as the standard recurrence for MERGE-SORT, and the overall time is $\Theta(n \cdot \lg n)$.

Problem 3

Suppose that $A[1..n]$ and $B[1..m]$ are sorted arrays, and $n \leq m$. Write an algorithm that finds their smallest common element; if they have no common elements, it should return 0.

The intuitive idea is to divide $B[1..m]$ into segments, each of size $k = m/n$, and perform binary search in each segment. We need to use a version of binary search, $\text{BIN-SEARCH}(B, p, r, k)$, which searches for an element k in a segment $B[p..r]$. If this version finds k, it returns the corresponding index of B; if not, it returns the index of the next larger element. For example, if $k = 6$ and $B[3..r] = \langle 3, 5, 7, 9 \rangle$, the search returns the index of 7. The following algorithm calls BIN-SEARCH on k-element segments of B.

COMMON-ELEMENT(A, B, n, m)

1. $k \leftarrow \lfloor m/n \rfloor$
2. $i \leftarrow 1$
3. $j \leftarrow 1$
4. **while** $i \leq n$ and $j \leq m$
 do
 if $A[i] = B[j]$
 then return $A[i]$
 if $A[i] < B[j]$
 then $i = i + 1$
 else repeat $j = j + k$
 until $j > m$ or $A[i] \leq B[j]$
 $j \leftarrow \text{BIN-SEARCH}(B, j - k + 1, \min(j, m), A[i])$
5. **return** 0

The running time of COMMON-ELEMENT is $O(n \cdot (1 + \lg \frac{m}{n}))$. In particular, if A and B are of about the same size, then the time is $O(m)$. On the other hand, if A is much smaller than B, the running time is significantly better than $O(m)$.