
Automatic Evaluation and Selection
of Problem-Solving Methods:

Theory and Experiments

Eugene Fink

School of Computer Science, Carnegie Mellon University

5000 Forbes Avenue, Pittsburgh, pa 15213

e.fink@cs.cmu.edu, www.cs.cmu.edu/∼eugene

Abstract

The choice of the right problem-solving method, from available methods, is a crucial
skill for experts in many areas. We present a technique for automatic selection among
methods based on analysis of their past performances. We formalize the statistical problem
involved in choosing an efficient method, derive a solution to this problem, and describe
a selection algorithm. The algorithm not only chooses among available methods, but also
decides when to abandon the chosen method if it takes too much time. We then extend
the basic statistical technique to account for problem sizes and similarity among problems.

Keywords: Learning, problem solving, statistical analysis.

1 Introduction

The choice of the right problem-solving method is one of the main themes of Polya’s [1957]
famous book How to Solve It. Polya showed that selection of an effective approach to a problem
is a crucial skill for a mathematician. Psychologists have accumulated much evidence that
confirms Polya’s insight: the performance of experts depends on their ability to find the right
approach to a given task [Newell and Simon, 1972; Gentner and Stevens, 1983; Simon, 1989;
Tabachneck-Schijf et al., 1997].

The purpose of our research is to automate selection of a problem-solving method; it is
motivated by work on the prodigy system, which includes several search engines [Veloso and
Stone, 1995; Veloso et al., 1995]. We need to provide a mechanism for deciding which search
engine is appropriate for a given problem. Furthermore, since programs in the real world cannot
run forever, we need to decide when to interrupt an unsuccessful search.

Researchers have long realized the importance of automatic selection of search algorithms,
and developed techniques for various special cases of this problem. In particular, Horvitz [1988]
described a framework for evaluating algorithms based on trade-offs between computational cost
and solution quality, and used it in selection of a sorting algorithm. Breese and Horvitz [1990]
designed a decision-theoretic procedure that evaluated different methods of belief-network in-
ference and selected the optimal method. Hansson and Mayer [1989], and Russell [1990] applied
related evaluation techniques to choose promising branches of the search space.

1

Russell et al. [1993] formalized a general problem of selecting among alternative problem-
solving methods and used dynamic programming to solve some special cases. Minton devel-
oped an inductive learning system that configured constraint-satisfaction programs, by selecting
among alternative search strategies [Minton, 1996; Allen and Minton, 1996].

Hansen and Zilberstein [1996] studied trade-offs between running time and solution quality
in simple any-time algorithms, and designed a dynamic-programming technique for deciding
when to terminate the search. Mouaddib and Zilberstein [1995] developed a similar technique
for hierarchical knowledge-based algorithms.

Howe et al. [1999] built the meta-planner system, which integrated six planners and chose
among them based on features of a given problem. It used linear regression to compute the
expected running time of each planner; however, the regression was based on several features
of classical planning, which may not generalize to other tasks.

We have found that the previous results are not applicable to selection among prodigy
search engines, because the developed techniques rely on analysis of a sufficiently large sample
of past performance data. When we apply prodigy to a new domain, or use new search
heuristics, we usually have little or no prior data. Acquiring more data is impractical, because
experimentation is more expensive than solving a given problem.

We have therefore developed a novel selection technique, which makes the best use of the
available data even when they do not allow an accurate estimate, and combines exploitation
of past data with exploration of new alternatives. We have also considered the task of setting
a time bound for the chosen method. The previous techniques for interrupting any-time al-
gorithms are not applicable, because prodigy does not use any-time behavior and does not
satisfy the assumptions of the past studies. We describe a statistical technique for selecting
time bounds, and demonstrate that setting an appropriate bound is as crucial as choosing the
right method. Although selection among prodigy engines has provided a motivation for this
work, the developed technique does not rely on specific properties of prodigy, and it can choose
among multiple problem-solving methods in any artificial-intelligence system.

We formalize the problem of estimating the expected performance of a method (Section 2),
derive a solution to this problem (Section 3), and use it in selecting a method and time bound
(Section 4). Note that we do not need a perfect estimate of the expected performance; we
only need accuracy sufficient for selecting the right method and a close-to-optimal time bound.
We give results of using the developed technique to select among prodigy search engines
(Section 5). Then, we describe the use of a heuristic measure of problem complexity (Section 6)
and similarity among problems (Section 7) to improve performance estimates. Finally, we test
the technique on artificially generated performance data (Section 8).

2 Motivating example

We give an example of a method-selection task in prodigy and use it to formalize the statistical
selection problem. We use prodigy to construct plans for transporting packages between
different locations in a city [Veloso, 1994], and consider three alternative search methods.

The first of them is based on several control rules, designed by Veloso [1994] and Pérez [1995]
to guide prodigy in the transportation domain. This method applies the selected actions as
early as possible; we call it apply. The second method uses the same control rules, along
with a special rule that delays the application and forces more emphasis on backward search

2

time (sec) and outcome # of # time (sec) and outcome # of
apply delay alpine packs apply delay alpine packs

1 1.6 s 1.6 s 1.6 s 1 16 4.4 s 68.4 s 4.6 s 4
2 2.1 s 2.1 s 2.0 s 1 17 6.0 s 200.0 b 6.2 s 6
3 2.4 s 5.8 s 4.4 s 2 18 7.6 s 200.0 b 7.8 s 8
4 5.6 s 6.2 s 7.6 s 2 19 11.6 s 200.0 b 11.0 s 12
5 3.2 s 13.4 s 5.0 s 3 20 200.0 b 200.0 b 200.0 b 16
6 54.3 s 13.8 f 81.4 s 3 21 3.2 s 2.9 s 4.2 s 2
7 4.0 s 31.2 f 6.3 s 4 22 6.4 s 3.2 s 7.8 s 4
8 200.0 b 31.6 f 200.0 b 4 23 27.0 s 4.4 s 42.2 s 16
9 7.2 s 200.0 b 8.8 s 8 24 200.0 b 6.0 s 200.0 b 8

10 200.0 b 200.0 b 200.0 b 8 25 4.8 s 11.8 f 3.2 s 3
11 2.8 s 2.8 s 2.8 s 2 26 200.0 b 63.4 f 6.6 f 6
12 3.8 s 3.8 s 3.0 s 2 27 6.4 s 29.1 f 5.4 f 4
13 4.4 s 76.8 s 3.2 s 4 28 9.6 s 69.4 f 7.8 f 6
14 200.0 b 200.0 b 6.4 s 4 29 200.0 b 200.0 b 10.2 f 8
15 2.8 s 2.8 s 2.8 s 2 30 6.0 s 19.1 s 5.4 f 4

Table 1: Performance of apply, delay, and alpine on thirty transportation problems.

[Veloso and Stone, 1995]; we call it delay. The third method, alpine [Knoblock, 1994], is
a combination of apply with an abstraction generator, which determines relative importance
of domain elements. alpine first ignores the less important elements and builds a solution
outline; it then refines the solution, taking care of the initially ignored details.

Experiments have shown that delaying the application improves efficiency in some domains,
but slows prodigy down in others [Stone et al., 1994]; abstraction sometimes saves time and
sometimes worsens the performance [Knoblock, 1993; Bacchus and Yang, 1992]. The most
reliable way to select an efficient method for a given domain is by empirical comparison.

The application of a method to a problem gives one of three outcomes: it may solve the
problem; it may terminate with failure after exhausting the available search space without find-
ing a solution; or we may interrupt it if it reaches some pre-set time bound without termination.
In Table 1, we give the results of solving thirty transportation problems by each of the three
methods; we denote successes by s, failures by f , and hitting the time bound by b.

Note that these data are only for illustrating the selection problem, and not for a general
comparison of these search techniques; their relative performance may be different in other
domains. Also note that the selection technique does not rely on specific properties of prodigy;
it is applicable to selection among multiple methods in any artificial-intelligence system.

Although each method outperforms the others on at least one problem (Table 1), a glance
at the data reveals that apply’s performance in this domain is probably the best among the
three. We use statistical analysis to confirm this intuitive conclusion, and show how to choose
a time bound for the selected method.

We may evaluate the performance of a method along several dimensions, such as the per-
centage of solved problems, average success time, and average failure time. To compare different
methods, we need a utility function that unifies these dimensions. We assume that we are pay-
ing for running time and getting a certain reward R for solving a problem. If the method solves
the problem, the overall gain is (R − time); in particular, if R < time, the “gain” is negative
and we are better off avoiding the problem. If the method fails or hits the time bound, the

3

 1 10 100

0.2

0.4

0.6

0.8

time bound

su
cc

es
s

an
d

fa
ilu

re
 p

ro
b.

APPLY

 1 10 100
0

0.2

0.4

0.6

0.8

time bound

DELAY

 1 10 100
0

0.2

0.4

0.6

0.8
ALPINE

time bound

Figure 1: Dependency of the success (o) and failure (+) probabilities on the time bound.

“gain” is (−time). We need to estimate the expected gain for all candidate methods and time
bounds, and select the method and bound that maximize the expectation, which leads to the
following problem.

Problem: Suppose that a method has solved n problems, has failed on m problems, and has
been interrupted upon hitting a time bound on k problems. The success times were s1, s2, ..., sn,
the failure times were f1, f2, ..., fm, and the interrupt times were b1, b2, ..., bk. Given a reward
R for solving a new problem and a time bound B, estimate the expected gain and determine the
standard deviation of the estimate.

We use the stationarity assumption [Valiant, 1984]; that is, we assume that the past problems
and the new problem are drawn randomly from the same population, using the same probability
distribution, and that the methods’ performance does not change over time.

3 Statistical foundations

We derive a solution to the statistical problem; for convenience, assume that success, failure,
and interrupt times are sorted in the increasing order; that is, s1 ≤ ... ≤ sn, f1 ≤ ... ≤ fm, and
b1 ≤ ... ≤ bk. We first consider the case when the time bound B is no larger than the lowest of
the past bounds, B ≤ b1. Let c be the number of success times that are no larger than B, that
is, sc ≤ B < sc+1; similarly, let d be the number of failures within B, that is, fd ≤ B < fd+1.

We estimate the probability of success by the fraction of problems solved within time B,
which is c

n+m+k
; similarly, the estimated probability of failure is d

n+m+k
. For example, the

chance that alpine with time bound 6.0 solves a transportation problem is 11
30

= 0.37, and the
probability that it terminates with failure is 2

30
= 0.07.

In Figure 1, we show the dependency between the time bound, given in the horizontal axes
using a logarithmic scale, and the estimated success and failure probabilities, in the transporta-
tion domain. The graphs do not include a failure estimate for apply, because its data contain
no failures. We have computed the probabilities only for the points marked by circles and
pluses, and connected them by straight segments.

We estimate the expected gain by averaging the gains that would be obtained in the past,
if we used the reward R and time bound B. The method would solve c problems, earning the

4

10 100
−20

0

20

40

60

APPLY

time bound

ex
pe

ct
ed

 g
ai

ns

10 100
−20

0

20

40

60

DELAY

time bound
10 100

−20

0

20

40

60

ALPINE

time bound

Figure 2: Dependency of the expected gain on the time bound, for the reward of 10.0 (dash-and-dot
lines), 30.0 (dashed lines), and 100.0 (solid lines). The dotted lines show the standard deviation of
the gain estimate for the 100.0 reward.

gains R−s1, R−s2, ..., R−sc, and fail d times, resulting in the negative gains −f1,−f2, ...,−fd.
In the remaining n + m + k − c− d cases, it would hit the time bound, each time earning −B.
The expected gain is the mean of all these n + m + k gains:

∑c
i=1(R − si) −∑d

j=1 fj − (n + m + k − c − d) · B
n + m + k

. (1)

For instance, if we use alpine with reward 30.0 and time bound 6.0, the expected gain is 6.0.
Since we have computed the mean for a random selection of problems, it may differ from the

mean of the overall problem population. We estimate the standard deviation of the expected
gain using the expression for the deviation of a sample mean:

√√√√ SqrSum − Sum2

n+m+k

(n + m + k) · (n + m + k − 1)
, (2)

where

Sum =
∑c

i=1(R − si) −∑d
j=1 fj − (n + m + k − c − d) · B,

SqrSum =
∑c

i=1(R − si)
2 +

∑d
j=1 f 2

j + (n + m + k − c − d) · B2.

This expression is an approximation based on the Central Limit Theorem, which states that
the distribution of sample means is close to the normal; for example, see the textbook by
Mendenhall et al. [1999]. The approximation accuracy improves with sample size; for thirty or
more sample problems, it is near-perfect. For instance, if we use alpine with reward 30.0 and
time bound 6.0, the standard deviation of the expected gain is 2.9.

In Figure 2, we show the dependency of the expected gain on the time bound, for three
different values of the reward R: 10.0, 30.0, and 100.0. The dotted lines show the standard
deviation of the gain estimate for the 100.0 reward; the lower line is “one deviation below” the
estimate, and the upper line is “one deviation above.”

We have so far assumed that B ≤ b1. We now consider the case when B is larger than e of
the past interrupt times, that is, be < B ≤ be+1. For example, suppose that we have interrupted

5

alpine’s
time

1 1.6 s
2 2.0 s
3 4.4 s
4 4.5 b
5 5.0 s
6 81.4 s
7 5.5 b
8 200.0 b
9 8.8 s

· · ·
29 10.2 f
30 5.4 f

(a)

−→

weight time
1.000 1.6 s
1.000 2.0 s
1.000 4.4 s

– –
1.048 5.0 s
1.048 81.4 s
1.048 5.5 b
1.048 200.0 b
1.048 8.8 s

· · ·
1.048 10.2 f
1.048 5.4 f

(b)

−→

weight time
1.000 1.6 s
1.000 2.0 s
1.000 4.4 s

– –
1.048 5.0 s
1.118 81.4 s

– –
1.118 200.0 b
1.118 8.8 s

· · ·
1.118 10.2 f
1.048 5.4 f

(c)

Table 2: Distributing the weights of interrupt times among the larger-time outcomes.

alpine on problem 4 after 4.5 seconds and on problem 7 after 5.5 seconds, obtaining the data
shown in Table 2(a), and we need to estimate the gain for B = 6.0. We cannot use b1, b2, ..., be

directly in the gain estimate since the time bound B would cause the method to run beyond
these old bounds. Instead, we “re-distribute” the corresponding probabilities among the other
outcomes.

If we had not interrupted the method at b1 in the past, it would have succeeded or failed
at some larger time, or hit a larger time bound. We may estimate the expected gain using the
data on the past problem-solving episodes in which the method has run beyond b1. We thus
remove b1 from the sample and distribute its chance to occur among the higher-time outcomes.
In Table 2(a), b1 is 4.5, and there are 21 problems with larger times; thus, we remove 4.5
from the sample and increase the weights of the larger-time outcomes from 1 to 1 + 1

21
= 1.048

(Table 2b). We next distribute the weight of b2 among the larger-than-b2 times. In the example,
b2 is 5.5, and there are 15 problems with larger times. We distribute b2’s weight, 1.048, among
these 15 problems, thus increasing their weight to 1.048 + 1.048

15
= 1.118 (Table 2c). We repeat

this process for b3, ..., be.
We denote the resulting weights of s1, ..., sc by u1, ..., uc, and the weights of f1, ..., fd by

v1, ..., vd. All success, failure, and interrupt times larger than B have the same weight, denoted
by w. The sum of the weights is equal to the number of problems in the original sample; that
is,
∑c

i=1 ui +
∑d

j=1 vj + (n + m + k − c − d − e) · w = n + m + k.
We have thus obtained n+m+k−e weighted times, and we use them to estimate the success

and failure probabilities. The probability of solving a problem, within the time bound B, is
u1+u2+...+uc

n+m+k
; similarly, the failure probability is v1+v2+...+vd

n+m+k
. If we use Table 2(c) to determine

these probabilities for alpine with time bound 6.0, then the success chance is 11.096
30

= 0.37,
and the failure chance is 2.096

30
= 0.07.

We next use the weighted times to compute the expected gain:

∑c
i=1 ui · (R − si) −∑d

j=1 vj · fj − (n + m + k − c − d − e) · w · B
n + m + k

. (3)

6

c number of the already processed success times;
the next success time to process will be sc+1

d number of the already processed failure times
e number of the already processed interrupt times
h number of the already processed time bounds
w weight of the success, failure, and interrupt times larger than the time bound Bh+1

S Num sum of the weights of the processed successes,
∑c

i=1 ui

F Num sum of the weights of the processed failures,
∑d

j=1 vj

S Sum weighted sum of the gains for the processed successes,
∑c

i=1 ui · (R − si)
F Sum weighted sum of the gains for the processed failures, −∑d

j=1 vj · fj

Sum weighted sum of the gains for all sample problems, for the current time bound Bh+1

S SqrSum weighted sum of the squared gains for the processed successes,
∑c

i=1 ui · (R − si)2

F SqrSum weighted sum of the squared gains for the processed failures,
∑d

j=1 vj · f2
j

SqrSum weighted sum of the squared gains for all sample problems, for the time bound Bh+1

Figure 3: Variables used in the gain-estimate algorithm in Figure 4.

Similarly, we use the weights in estimating the standard deviation of the expected gain:

√√√√ SqrSum − Sum2

n+m+k

(n + m + k) · (n + m + k − e − 1)
, (4)

where

Sum =
∑c

i=1 ui · (R − si) −∑d
j=1 vj · fj − (n + m + k − c − d − e) · w · B,

SqrSum =
∑c

i=1 ui · (R − si)
2 +

∑d
j=1 vj · f 2

j + (n + m + k − c − d − e) · w · B2.

The application of these expressions to the data in Table 2(c), for alpine with reward 30.0 and
time bound 6.0, gives the expected gain of 6.1 and the standard deviation of 3.0.

If B is larger than the largest of the past bounds (that is, B > bk), and the largest past
bound is larger than all past success and failure times (that is, bk > sn and bk > fm), then
the re-distribution procedure does not work. We need to distribute the weight of bk among
the larger-time problems, but the sample has no such problems. In this case, the data are
insufficient for the statistical analysis because we do not have past experience with large enough
time bounds.

We have assumed in the derivation that the execution cost is proportional to the running
time; however, we may extend the results to any other monotonic dependency between time
and cost, by replacing the terms (R− si), fi, and B with more complex functions [Fink, 2003].

We now present an algorithm for computing the success and failure probabilities, gain
estimates, and estimate deviations, for multiple values of the time bound B. We describe the
variables used in the computation in Figure 3 and give pseudocode in Figure 4. The algorithm
computes the weights and gain estimates in one pass through the sorted list of successes, failures,
interrupts, and time-bound values. When processing a success or failure time, it increments the
corresponding sums of the weighted gains and weighted squares of the gains. When processing
an interrupt time, it modifies the weight value. When processing a time bound, it uses the
accumulated sums to compute the gain estimate and standard deviation for this bound.

7

The input of the algorithm includes the reward R; the sorted list of success times, s1, ..., sn; the sorted
list of failure times, f1, ..., fm; the sorted list of interrupt times, b1, ..., bk; and a sorted list of candidate
time bounds, B1, ..., Bl. The variables used in the computation are described in Figure 3.

Set the initial values:
c := 0; d := 0; e := 0; h := 0
w := 1; S Num := 0; F Num := 0
S Sum := 0; F Sum := 0
S SqrSum := 0; F SqrSum := 0

Repeat the computation until finding the gains for all time bounds, that is, until h = l:
• Select the smallest among the following four times: sc+1, fd+1, be+1, and Bh+1

• If the success time sc+1 is selected, increment the related sums:
S Num := S Num + w

S Sum := S Sum + w · (R − sc+1)
S SqrSum := S SqrSum + w · (R − sc+1)2

c := c + 1
• If the failure time fd+1 is selected, increment the related sums:

F Num := F Num + w

F Sum := F Sum − w · fd+1

F SqrSum := F SqrSum + w · f2
d+1

d := d + 1
• If the interrupt time be+1 is selected:

If no success or failure times are left, that is, c = n and d = m,
then terminate (the data are insufficient for estimating the gains for the remaining bounds)

Else, distribute the interrupt’s weight among the remaining times, by incrementing w and e:
w := w · n+m+k−c−d−e

n+m+k−c−d−e−1

e := e + 1
• If the time bound Bh+1 is selected:

First, compute the sum of the sample-problem gains and the sum of their squares:
Sum := S Sum + F Sum − (n + m + k − c − d − e) · w · Bh+1

SqrSum := S SqrSum + F SqrSum + (n + m + k − c − d − e) · w · B2
h+1

Next, compute the success and failure probability, gain estimate, and deviation, for Bh+1:
Success probability: S Num

n+m+k Gain estimate: Sum
n+m+k

Failure probability: F Num
n+m+k Estimate deviation:

√
SqrSum−Sum2/(n+m+k)
(n+m+k)·(n+m+k−e−1)

Finally, increment the number of processed bounds:
h := h + 1

Figure 4: Computing the success and failure probabilities, gain estimates, and estimate deviations.

8

The overall time of this computation is linear; that is, for l time bounds and a sample of
n successes, m failures, and k interrupts, the algorithm’s complexity is O(l + n + m + k). The
complexity of pre-sorting the sample is O((l + n + m + k) · lg(l + n + m + k)), but in practice
it takes much less time than the rest of the computation. We have implemented the algorithm
in Common Lisp and tested it on a Sun Sparc 5, which is the same computer as we have used
for solving the transportation problems; the running time is about (l + n + m + k) · 3 · 10−4

seconds.

4 Selection of a method and time bound

We use the statistical estimate in selecting a problem-solving method and time bound, and
provide heuristics for combining exploitation of past experience with exploration of new alter-
natives. The basic idea is to estimate the gain for a number of time bounds, for each available
method, and select the method and bound with the maximal gain. For example, if the reward
in the transportation domain is 30.0, then the best choice is apply with time bound 11.6, which
gives the expected gain of 14.0. This choice corresponds to the maximum of the dashed lines
in Figure 2. If the expected gain for all time bounds is negative, then we should not solve the
problem at all. For example, if the only available method is delay, and the reward is 10.0,
then we should skip the problem.

For each method, we use its past success times as candidate bounds, and compute the
expected gain only for these bounds. If we used some other time bound B, we would get a
smaller gain than for the closest lower success time si, where si < B < si+1, because extending
the bound from si to B would not increase the number of successes on the past problems. In
practice, we multiply the success times by 1.001 to obtain candidate bounds, in order to avoid
rounding errors. If several candidate bounds are “too close” to each other, we drop some of
them, to reduce the amount of computation. In the experiments, we have considered bounds
too close if they are within the factor of 1.01 from each other.

We now describe a technique for incremental learning of the performance of available meth-
ods. The system may begin with no past experience and accumulate performance data as it
solves more problems. For each new problem, it uses the statistical analysis to select a method
and time bound; after applying the selected method, it adds the result to the performance data.
The incremental learning causes a deviation from rigorous statistics: the resulting success, fail-
ure, and interrupt times are not independent because the time bound used for each problem
depends on the times of solving the previous problems; however, it gives good results in practice.

Note that the system needs to choose a method and time bound even if it has no past
experience. Also, it sometimes needs to deviate from the maximal-expectation selection in
order to explore new opportunities. If it always used the selection that maximized the expected
gain, it would be stuck with the method that yielded the first success, and it would never set a
time bound higher than the first success time. We have not constructed a statistical model for
combining exploitation and exploration; instead, we provide a heuristic solution, which gives
good empirical results. We first consider the selection of a bound for a fixed method, and then
show how to select a method.

9

Selecting a time bound

If we have no previous data on a method’s performance, we set the time bound equal to the
reward. This heuristic is based on the observation that, for most artificial-intelligence search
algorithms, the probability of solving a problem within the next second usually declines with
the passage of search time. For example, if an algorithm has not solved a problem within half
a minute, chances are it will not find a solution in the next half minute. Thus, if the reward is
30.0 and the algorithm has already run for 30.0 seconds, it is time to interrupt the search.

Now suppose that we have accumulated some performance data, which allow finding the
bound with the maximal expected gain. To encourage exploration, we select the largest bound
whose expected gain is “not much different” from the maximum. We denote the maximal
expected gain by gmax and its standard deviation by σmax. Suppose that the expected gain for
some bound is g, and its deviation is σ. The expected difference between g and the maximal gain
is gmax − g. If the estimates are normally distributed, the standard deviation of the expected

difference is
√

σ2
max + σ2; this expression is an approximation because the distribution for small

samples may be Student’s rather than normal, and because gmax and g are not independent
variables, as they are computed from the same data.

We say that g is “not much different” from the maximal gain if the ratio of the expected
difference to its deviation is bounded by some constant. We set this constant to 0.1, which
gives good experimental results:

gmax − g√
σ2

max + σ2
< 0.1.

We thus select the largest time bound whose gain estimate g satisfies this condition.
We present the results of this strategy in Figure 5. We have run each of the three methods on

the thirty transportation problems, in order. The horizontal axes show the problem’s number
(from 1 to 30), and the vertical axes are the running time. The dotted lines show the selected
time bounds, whereas the dashed lines mark the time bounds that give the maximal gain
estimates. The solid lines show the running time; they touch the dotted lines where the methods
hit the time bound. The successfully solved problems are marked by circles, and the failures
are shown by pluses.

apply’s total gain is 360.3, which makes an average of 12.0 per problem. If we used the
maximal-gain time bound, 11.6, for all problems, the gain would be 14.0 per problem. Thus,
the incremental learning yielded a near-maximal gain in spite of the initial ignorance. The time
bounds (dotted line) converge to the estimated maximal-gain bounds (dashed line) since the
deviations of the gain estimates decrease as the system solves more problems. apply’s estimate
of the maximal-gain bound, after solving all problems, is 9.6. It differs from the 11.6 bound,
found from Table 1, because the use of bounds that ensure a near-maximal gain has prevented
sufficient exploration.

delay’s total gain is 115.7, which is 3.9 per problem. If we used the data in Table 1 to find
the optimal bound, which is 6.2, and solved all problems with this bound, we would earn 5.7
per problem. Thus, the incremental-learning gain is about two-thirds of the gain that could
be obtained based on the advance knowledge. Finally, alpine’s total gain is 339.7, or 11.3 per
problem. The estimate based on Table 1 gives the bound 11.0, which would result in earning
12.3 per problem. Unlike apply, both delay and alpine have found the optimal bound after
solving all problems.

10

10 20 30
0

5

10

15

20

25

30

APPLY

problem’s number

ru
nn

in
g

tim
e

an
d

bo
un

ds

10 20 30
0

5

10

15

20

25

30

DELAY

problem’s number
10 20 30

0

5

10

15

20

25

30

ALPINE

problem’s number

Figure 5: Incremental learning of a time bound: the running times (solid lines), time bounds (dotted
lines), and maximal-gain bounds (dashed lines). The successes are marked by circles (o) and the
failures by pluses (+).

The main “losses” in the incremental learning occur on the first ten problems, when the
past data are insufficient for selecting an appropriate time bound. After this initial period, the
choice of a bound becomes close to the optimal. The total time of the statistical computations
while solving the thirty problems is 0.26 seconds, which is less than 0.01 per problem. It is
negligible in comparison with the problem-solving time, which averages at 6.5 per problem for
apply, 7.7 per problem for delay, and 7.1 per problem for alpine.

Selecting a method

We describe incremental selection of a problem-solving method. If we have no past data for
some method, we choose this unknown method, thus encouraging exploration. If we have no
data for several methods, we choose among them at random. If we have data for all methods,
we first select a time bound for each method, and determine the gain estimates and their
standard deviations for the selected bounds. Then, for each method and its selected bound,
we find the probability that it is the best among the methods. Finally, we make a weighted
random selection; the chance of choosing a method is equal to the probability that it is the
best. This strategy leads to frequent use of methods that perform well, but it also encourages
some exploratory use of poor performers.

We now explain a procedure for estimating the probability that a specific method is the best.
Suppose that we have M different methods, and we select one of them, with gain estimate g
and deviation σ. Recall that we compute g from the sample of past data, for the selected time
bound. We denote the expected problem-solving gain, for the selected bound, by G; then, g
is an unbiased statistical estimate of G. Finally, we denote the gain estimates of the other
methods by g1, ..., gM−1 and the corresponding deviations by σ1, ..., σM−1.

First, suppose that we know the exact value of G, that is, the mean gain for the population
of all possible problems. The selected method is the best if G is larger than the expected gains
of the other methods. We apply the statistical z-test to determine the probability that G is the
largest among the expected gains.

We begin by finding the probability that G is greater than the expected gain of another
method i, with gain estimate gi and deviation σi. The expected difference between the two

11

gains is G − gi, and the standard deviation of the difference is σi. The z value is the ratio of
the expected difference to its standard deviation; that is, z = G−gi

σi
. The z-test converts this

value into the probability that the expected gain for the selected method is larger than that
for method i; we denote the resulting probability by pi(G). Note that this z-test uses the value
of G, which cannot be found from the sample data.

We next determine the probability p(G) that G is larger than the expected gains of all other
methods. If the gain estimates g1, ..., gM−1 are independent, the probabilities p1(G), ..., pM−1(G)
are also independent, and p(G) is their product:

p(G) =
M−1∏
i=1

pi(G).

Since we cannot compute G from the available data, we need to use its unbiased estimate g.
The distribution of the possible values of G is approximately normal, with mean g and standard
deviation σ, which means that its probability density function is as follows:

f(G) =
e−(G−g)2/(2σ2)

σ · √2π
.

To determine the probability p that the selected method is the best, we integrate over possible
values of G:

p =
∫ ∞

−∞
p(G) · f(G) d G =

∫ ∞

−∞

M−1∏
i=1

pi(G) · e−(G−g)2/(2σ2)

σ · √2π
d G. (5)

Note that we have made two simplifying assumptions. First, we have assumed that the
sample means g, g1, ..., gM−1 are normally distributed; however, if we compute them from small
samples, their distributions may not be normal. Second, we have viewed g, g1, ..., gM−1 as
independent variables. If we use incremental learning, then the choice of a method depends on
the previous choices, and the data collected for different methods are not independent.

Although the derived expression is an approximation, it works well for the learning algo-
rithm. We use the probability p only for the “occasional exploration” heuristic, which does
not require high accuracy in determining the exploration frequency. We have implemented the
computation of p using numeric integration on the interval from g − 4σ to g + 4σ, with step
0.1σ; that is, we approximate the integral by the following sum:

40∑
j=−40

M−1∏
i=1

pi(g + 0.1jσ) · e−(0.1jσ)2/(2σ2)

10 · √2π
. (6)

For example, suppose that we are choosing among apply, delay, and alpine based on
the data in Table 1. We select bound 13.1 for apply, which gives a gain estimate of 13.5
with deviation 3.3; bound 5.3 for delay, with a gain estimate of 5.3 and deviation 3.0; and
bound 13.2 for alpine, with a gain of 11.2 and deviation 3.2. apply outperforms the other
two methods with probability 0.68; the probability that delay is the best is 0.01; and alpine’s
chance of being the best is 0.31. We now choose one of the methods at random; the chance of
choosing each method equals its probability of being the best.

In Figure 6, we present the results of this strategy for the reward of 30.0. In this experiment,
we first use the thirty problems from Table 1 and then sixty additional transportation problems.

12

10 20 30 40 50 60 70 80 90

0

10

20

30

problem’s number

ru
nn

in
g

tim
e

Figure 6: Incremental selection of a method and time bound on ninety transportation problems. The
graph shows the running times (solid line), successes (o), and failures (+). The three rows of symbols
below the solid line show the choice among apply (o), delay (x), and alpine (∗).

The horizontal axis shows the number of a problem, and the vertical axis is the running time;
we mark successes by circles and failures by pluses. The rows of symbols below the curve show
the method selection: a circle for apply, a cross for delay, and an asterisk for alpine.

The total gain is 998.3, which is 11.1 per problem. The overall time of the statistical
computations is 0.78, which is about 0.01 per problem. The selection converges to the use of
apply with the time bound 12.7, which is the optimal for this set of ninety problems. If we
used the final selection on all problems, we would earn 13.3 per problem. The convergence is
slower than in the bound-selection experiments (Figure 5) because we test each method only
on about one third of all problems.

5 Empirical examples

We give results of the statistical selection in two other domains. First, we consider an extended
transportation domain, which includes airplanes for carrying packages between cities and vans
for local deliveries [Veloso, 1994]. In Table 3, we give the performance of apply, delay, and
alpine on thirty problems in this domain.

In Figure 7, we present the results of the incremental learning of a time bound for the
reward of 400.0. The apply learning gives the gain of 110.1 per problem and eventually selects
the bound 127.5. The optimal bound for this set of problems is 97.0; if we used it for all
problems, we would earn 135.4 per problem. delay earns 131.1 per problem and chooses the
105.3 bound at the end of the learning process. The actual optimal bound is 98.4, which would
give 153.5 per problem. Finally, alpine gains 243.5 per problem and chooses the bound 127.6.
The optimal bound for alpine is 430.8, which would give the per-problem gain of 255.8. As a
side note, alpine outperforms apply and delay because it uses abstraction, which separates
the problem of between-city transportation from within-city deliveries.

Although the bound learned for alpine is much smaller than the optimal (127.6 ver-
sus 430.8), the resulting gain is close to the optimal. In this experiment, alpine’s dependency
of the expected gain on the time bound has a long plateau, and the choice of a bound within the
plateau does not make much difference. Note that alpine’s optimal bound is larger than the
reward (430.8 versus 400.0); this observation shows imperfection of the heuristic for choosing

13

time (sec) and outcome # of # time (sec) and outcome # of
apply delay alpine packs apply delay alpine packs

1 4.7 s 4.7 s 4.7 s 1 16 35.1 s 21.1 s 6.6 f 2
2 96.0 s 9.6 f 7.6 f 2 17 60.5 s 75.0 f 13.7 s 2
3 5.2 s 5.1 s 5.2 s 1 18 3.5 s 3.4 s 3.5 s 1
4 20.8 s 10.6 f 14.1 s 2 19 4.0 s 3.8 s 4.0 s 1
5 154.3 s 31.4 s 7.5 f 2 20 232.1 s 97.0 s 9.5 f 2
6 2.5 s 2.5 s 2.5 s 1 21 60.1 s 73.9 s 14.6 s 2
7 4.0 s 2.9 s 3.0 s 1 22 500.0 b 500.0 b 12.7 f 2
8 18.0 s 19.8 s 4.2 s 2 23 53.1 s 74.8 s 15.6 s 2
9 19.5 s 26.8 s 4.8 s 2 24 500.0 b 500.0 b 38.0 s 4

10 123.8 s 500.0 b 85.9 s 3 25 500.0 b 213.5 s 99.2 s 4
11 238.9 s 96.8 s 76.6 s 3 26 327.6 s 179.0 s 121.4 s 6
12 500.0 b 500.0 b 7.6 f 4 27 97.0 s 54.9 s 12.8 s 6
13 345.9 s 500.0 b 58.4 s 4 28 500.0 b 500.0 b 16.4 f 8
14 458.9 s 98.4 s 114.4 s 8 29 500.0 b 500.0 b 430.8 s 16
15 500.0 b 500.0 b 115.6 s 8 30 500.0 b 398.7 s 214.8 s 8

Table 3: Performance in the extended transportation domain.

the initial bound, which assumes that the optimal bound is no larger than the reward.
In Figure 8, we show the results of the incremental selection of a method; we first use the

thirty problems from Table 3 and then sixty other problems. The learning process converges
to the choice of alpine with the bound 300.6, and gives the gain of 207.0 per problem. The
optimal choice for these problems is alpine with the time bound 517.1, which would yield
255.8 per problem. We have identified this optimal choice in a separate experiment, by running
every method on all ninety problems.

We next apply the learning technique to the bound selection when calling a friend on the
phone. We determine how many seconds (or rings) a caller should wait for an answer before
hanging up. The reward for reaching a friend may be determined by the time that the caller is
willing to wait in order to talk now, as opposed to calling later. In Table 4, we give the times
for sixty calls, rounded to 0.05 seconds; we have made these calls to sixty different people at
their home numbers, and measured the time from the beginning of the first ring, skipping the
connection delays. A success occurs when our party answers the phone, whereas a reply by an
answering machine is a failure.

The graph in Figure 9(a) shows the dependency of the expected gain on the time bound,
for the rewards of 30.0, 90.0, and 300.0. We assume that the caller is not interested in leaving
a message, which means that a reply by a machine gets the reward of zero. The optimal bound
for the 30.0 and 90.0 rewards is 14.7 (three rings), whereas the optimal bound for the 300.0
reward is 25.5 (five rings).

If the caller plans to leave a message, then the “failure” reward is not zero, although it may
be smaller than the success reward. The graph in Figure 9(b) shows the expected gain for the
success reward of 90.0 with three different failure rewards, 10.0, 30.0, and 90.0. The optimal
bound for the failure reward of 10.0 is 26.7 (five rings); for the other two rewards, it is 32.9 (six
rings).

The graph in Figure 10 shows the results of selecting the bounds incrementally, for the 90.0
success reward and zero failure reward. The learned bound converges to the optimal bound,

14

10 20 30
0

100

200

300

400

APPLY

problem’s number

ru
nn

in
g

tim
e

an
d

bo
un

ds

10 20 30
0

100

200

300

400

DELAY

problem’s number
10 20 30

0

100

200

300

400

ALPINE

problem’s number

Figure 7: Incremental learning of time bounds in the extended transportation domain: the running
times (solid lines), selected bounds (dotted lines), and maximal-gain bounds (dashed lines). The
successes are marked by circles (o) and the failures by pluses (+).

10 20 30 40 50 60 70 80 90

0

100

200

300

400

problem’s number

ru
nn

in
g

tim
e

Figure 8: Selection of a method in the extended transportation domain: the running times (solid
line), successes (o) and failures (+), and the choice among apply (o), delay (x), and alpine (∗).

which is 14.7. The average gain obtained during the learning process is 38.9 per call. If we used
the optimal bound for all calls, we would earn 41.0 per call.

To summarize, the experiments in the two prodigy domains and phone-call domain show
that the learning procedure usually finds an appropriate bound and yields a near-optimal gain.
In Section 8, we will give a series of tests with artificially generated time values, using normal,
log-normal, uniform, and log-uniform distributions, and show that the learning gives good
results for all four distributions.

6 Problem sizes

We have considered the task of finding a method and time bound that work well for most
problems. If we can estimate the sizes of problems, we improve the performance by adjusting
the time bound to a problem size.

We define a problem size as an easily computable positive value that correlates with the
problem complexity; the larger the value, the longer it usually takes to solve the problem.
Finding an accurate measure of complexity is usually a difficult task, but many domains allow

15

time # time # time # time # time
1 5.80 f 13 11.45 f 25 11.30 f 37 26.70 f 49 10.05 s
2 8.25 s 14 3.70 s 26 10.20 f 38 6.20 s 50 6.50 s
3 200.00 b 15 7.25 s 27 4.15 s 39 24.45 f 51 15.10 f
4 5.15 s 16 4.10 s 28 14.70 s 40 29.30 f 52 25.45 s
5 8.30 s 17 8.25 s 29 2.50 s 41 12.60 s 53 20.00 f
6 200.00 b 18 5.40 s 30 8.70 s 42 26.15 f 54 24.20 f
7 9.15 s 19 4.50 s 31 6.45 s 43 7.20 s 55 20.15 f
8 6.10 f 20 32.85 f 32 6.80 s 44 16.20 f 56 10.90 s
9 14.15 f 21 200.00 b 33 8.10 s 45 8.90 s 57 23.25 f

10 200.00 b 22 200.00 b 34 13.40 s 46 4.25 s 58 4.40 s
11 9.75 s 23 10.50 s 35 5.40 s 47 7.30 s 59 3.20 f
12 3.90 s 24 14.45 f 36 2.20 s 48 10.95 s 60 200.00 b

Table 4: Waiting times (seconds) in sixty phone-call experiments.

10 100

0

50

100

150

(a) gains w/o failure rewards

time bound

ex
pe

ct
ed

 g
ai

ns

10 100

0

50

100

150

(b) gains with failure rewards

time bound

Figure 9: Dependency of the expected gain on the time bound in the phone-call domain: (a) for
the rewards of 30.0 (dash-and-dot line), 90.0 (dashed line), and 300.0 (solid line); (b) for the success
reward of 90.0 and failure rewards of 10.0 (dash-and-dot line), 30.0 (dashed line), and 90.0 (solid line).

a rough complexity estimate. In the transportation domain, we estimate the complexity by
the number of packages to be delivered. In the rightmost column of Tables 1 and 3, we show
the number of packages in each problem. Note that measures of a problem size are usually
domain-specific, and the choice of a good measure is the user’s responsibility. We allow the
user to specify different measures for different problem-solving methods.

We apply regression to find the dependency between the sizes of sample problems and the
times to solve them using separate regressions for successes and failures. In prodigy, successes
usually occur after exploring a small part of the search space, whereas failures require the
exploration of the entire space, and the dependency of the success time on the problem size is
different from that of the failure time.

We assume that the dependency of time on size is either polynomial or exponential. If it is
polynomial, the logarithm of time depends linearly on the logarithm of size; for an exponential
dependency, the time logarithm depends linearly on size. We thus use linear least-square regres-
sion to find both polynomial and exponential dependencies. In Figures 11(a) and 11(b), we give
the regression expressions for a polynomial dependency between size and time; the regression

16

5 10 15 20 25 30 35 40 45 50 55
0

10

20

30

90

call’s number

w
ai

tin
g

tim
e

an
d

bo
un

ds

Figure 10: Incremental learning of a time bound in the phone-call domain.

(a) Approximate dependency of the running time on the problem size:
ln time = α + β · ln size;
that is, time = eα · sizeβ.

(b) Regression coefficients:

β =
∑n

i=1
ln sizei·ln timei−SizeSum·TimeSum/n

SizeSqrSum−SizeSum2/n
,

α = (TimeSum − β · SizeSum)/n,
where

TimeSum =
∑n

i=1 ln timei,
SizeSum =

∑n
i=1 ln sizei,

SizeSqrSum =
∑n

i=1(ln sizei)
2.

(c) The t value, for evaluating the regression accuracy:

t = β
TimeDev

·
√

SizeSqrSum − SizeSum2/n,
where

TimeDev =
√

1
n−2

·
(∑n

i=1
(ln timei)2 − TimeSum2/n − β · (

∑n

i=1
ln sizei · ln timei − SizeSum · TimeSum/n)

)
.

Figure 11: Regression coefficients and the t value for the polynomial dependency of time on size.

for an exponential dependency is similar. We denote the number of sample problems by n, the
problem sizes by size1, ..., sizen, and the corresponding running times by time1, ..., timen.

In Figure 12, we give the results of regressing the success times for the transportation
problems from Table 1. The top three graphs show the polynomial dependency, whereas the
bottom graphs are for the exponential dependency. The horizontal axes show the problem sizes,
and the vertical axes are the running times. The circles mark the sizes and times of the problem
instances, and the solid lines are the regression results.

We evaluate the regression using the t-test, where the t value is the ratio of the estimated
slope of the regression line to the standard deviation of the slope estimate. We give the ex-
pression for t in Figure 11(c), where TimeDev is the standard deviation of time logarithms.
The t-test converts the t value into the probability that using the regression is no better than
ignoring the sizes and simply taking the mean time. This probability is called the P value; it
is a function of the t value and the number n of sample problems. When the regression gives

17

 1 10
 1

10

100
APPLY

t = 4.2, P < 0.01

po
ly

no
m

ia
l d

ep
en

de
nc

y

 1 10
 1

10

100
DELAY

t = 1.6, 0.1 < P < 0.2
 1 10

 1

10

100
ALPINE

t = 3.5, P < 0.01

5 10 15
 1

10

100

t = 3.8, P < 0.01

ex
po

ne
nt

ia
l d

ep
en

de
nc

y

5 10 15
 1

10

100

t = 0.5, P > 0.2
5 10 15

 1

10

100

t = 3.3, P < 0.01

Figure 12: Dependency of the success time on the problem size. The top graphs show the regression
for a polynomial dependency, and the bottom graphs are for an exponential dependency.

a good fit, t is large and P is small. In Figure 12, we give the t values and the corresponding
intervals of the P value.

We use the regression only if P is smaller than a certain threshold; in the experiments, we
have set this threshold to 0.2; that is, we have used sizes when P < 0.2. We have chosen 0.2
rather than more “customary” 0.05 or 0.02 because an early detection of a dependency between
sizes and times is more important for the overall efficiency than establishing a high certainty
of the dependency. For example, all three polynomial regressions in the top row of Figure 12
pass the P < 0.2 test, and the exponential regressions for apply and alpine also satisfy this
condition, whereas the exponential regression for delay fails the test.

The choice between the polynomial and exponential regression is based on the t value;
specifically, we prefer the regression with the larger t. In Figure 12, the polynomial regression
wins for all three methods. The user has an option to select between the two regressions
herself; for example, she may insist on the exponential regression. We also allow the user to set
a regression slope, which is useful when the past data are insufficient for an accurate estimate.
If the user specifies a slope, the system uses her value in the regression; however, it compares
the user’s value with the regression estimate of Figure 11, determines the statistical significance
of the difference, and gives a warning if the user’s estimate is off with high probability.

Note that the least-square regression and related t-test make quite strong assumptions about
the distribution. First, for problems of fixed size, the distribution of the time logarithms must
be normal; second, for all problem sizes, the standard deviation of the distribution must be
the same. In practice, however, the regression provides a good approximation even when these

18

 1 3 8
 1

10

100

problem size

ru
nn

in
g

tim
e

Figure 13: Scaling two success times (o) and a failure time (+) of delay to a 3-package problem.

assumptions are not satisfied.
The use of the problem size in estimating the gain is based on “scaling” the times of sample

problems to a given size. We illustrate it in Figure 13, where we scale delay’s times of a
1-package success, an 8-package success, and an 8-package failure for estimating the gain on
a 3-package problem. To scale a problem’s time to a given size, we draw the line with the
regression slope through the point representing the problem (solid lines in Figure 13), to the
intersection with the vertical line through the given size (dotted line); the ordinate of the
intersection is the scaled time.

If the size of a problem is sizeold, the running time is timeold, and we need to scale it to a
size sizenew, using a regression slope β, then we compute the scaled time timenew as follows:

Polynomial regression:
ln timenew = ln timeold + β · (ln sizenew − ln sizeold);
that is, timenew = timeold · (sizenew/sizeold)

β.

Exponential regression:
ln timenew = ln timeold + β · (sizenew − sizeold);
that is, timenew = timeold · exp(β · (sizenew − sizeold)).

We use the slope of the success regression in scaling success times, and the slope of the failure
regression in scaling failures. The slope for scaling an interrupt should depend on whether the
method would succeed or fail if we did not interrupt it; however, we do not know which outcome
would occur. We use a simple heuristic of choosing between the success and failure slope based
on which of them has smaller P . We have also experimented with “distributing” each interrupt
point between success and failure slopes, similar to the distribution of small interrupt times
described in Section 3; however, it did not provide higher accuracy than the simple heuristic.

For a sample of n successes, m failures, and k interrupts, the overall time of computing the
polynomial and exponential regression, selecting between the two regressions, and scaling the
sample times is (n+m+k) ·9 ·10−4 seconds. For the incremental learning, we have implemented
a procedure that updates the slope and t value after adding each new problem to the sample;
its amortized time is ((n + m + k) · 2 + 7) · 10−4 seconds per problem.

After scaling the sample times to a given size, we apply the technique of Section 3 to compute
the gain estimate and its standard deviation. The only difference is that we reduce the second
term in the denominator for the deviation by 2 because the success and failure regressions

19

10 100
−20

0

20

40

60

80

1 package

time bound

ex
pe

ct
ed

 g
ai

ns

10 100
−20

0

20

40

60

80

3 packages

time bound
10 100

−20

0

20

40

60

80

10 packages

time bound

Figure 14: Dependency of apply’s expected gain on the time bound, for rewards of 10.0 (dash-and-
dot lines), 30.0 (dashed lines), and 100.0 (solid lines). The dotted lines show the standard deviation
for the 100.0 reward.

w/o sizes with sizes
transportation by vans (Section 4)

apply’s bound selection 12.0 12.2
delay’s bound selection 3.9 4.7
alpine’s bound selection 11.3 11.9
method selection 11.1 11.8
transportation by vans and airplanes (Section 5)
apply’s bound selection 110.1 121.6
delay’s bound selection 131.1 137.4
alpine’s bound selection 243.5 248.3
method selection 207.0 215.6

Table 5: Per-problem gains in the learning experiments, without and with the use of sizes.

reduce the degrees of freedom of the sample, which means that the deviation is as follows:√√√√ SqrSum − Sum2

n+m+k

(n + m + k) · (n + m + k − e − 3)
.

In Figure 14, we show the dependency of the expected gain on the time bound when using
apply on 1-package, 3-package, and 10-package problems. If we use sizes in the experiments
of Sections 4 and 5, we get larger gains in all eight experiments, as shown in Table 5.

7 Similarity hierarchy

We have estimated the expected gain by averaging the gains for all sample problems. If some
old problems are especially similar to a new problem, we may improve the estimate by averaging
only the gains for these similar problems.

We represent similarity among problems by a tree-structured similarity hierarchy. The leaf
nodes of the hierarchy are groups of similar problems, and the other nodes represent weaker sim-
ilarity among groups; we assume that each problem belongs to exactly one group. For instance,

20

time (sec) and outcome # of # time (sec) and outcome # of
apply delay alpine conts apply delay alpine conts

1 2.3 s 2.3 s 2.1 s 1 6 200.0 b 200.0 b 10.1 f 8
2 3.1 s 5.1 s 4.1 s 2 7 3.2 s 3.2 s 3.2 s 2
3 5.0 s 20.2 s 4.8 s 3 8 24.0 s 200.0 b 26.3 s 8
4 3.3 s 8.9 s 3.2 s 2 9 4.8 s 86.2 s 3.4 s 4
5 6.7 s 36.8 s 6.4 s 4 10 8.0 s 200.0 b 9.4 s 6

Table 6: Performance on ten container-delivery problems.

(a) Similarity hierarchy.

(vans and planes)
between cities

delivery

succ dev:
fail dev:

domain

succ dev:
fail dev:

within city

succ dev:
fail dev:

between cities

succ dev:
fail dev: Unknown

succ dev:
fail dev:

packages

1.08
0.37

0.64
0.23

0.38

0.69
0.29

0.73
0.08

succ dev:
fail dev:

1.39

domain

0.38

within city
(vans only)

delivery

containers
delivery ofdelivery of

0.92
0.27

succ dev:
fail dev:

packages

succ dev:
fail dev:

0.86
0.44

within city

succ dev:
fail dev:

1.60
0.33

between cities

succ dev:
fail dev:

0.75
Unknown

extended

domain
transportation

containers containerspackages

(c) ALPINE’s deviations with regression.(b) ALPINE’s deviations w/o regression.

Figure 15: Similarity hierarchy (a) and the deviations of alpine’s success and failure logarithms (b, c);
we give the deviations computed without the regression (b), and the deviations with the regression (c).

we may divide transportation problems into within-city and between-city deliveries. We extend
this example with a new type of problems, which involves transportation of containers within a
city. A van can carry only one container at a time, which makes container delivery harder than
package delivery. In Table 6, we give the performance of apply, delay, and alpine on ten
problems involving containers. We subdivide within-city problems into package and container
deliveries, and show the resulting hierarchy in Figure 15(a).

The construction of a hierarchy is the user’s responsibility. We allow the user to construct
a separate hierarchy for each problem-solving method or a common hierarchy for all methods.
We also allow different problem-size measures for different groups of problems.

We may estimate the similarity of problems in a group by the standard deviation of the
logarithms of running times, computed for the sample problems in the group:

TimeDev =

√√√√ 1

n − 1
·
(

n∑
i=1

(ln timei)2 − (
n∑

i=1

ln timei)2/n

)
.

We compute the deviations separately for successes and failures, and use them as a heuristic
measure of the hierarchy’s quality; the smaller the deviations for the leaf groups, the better the
hierarchy. If we use the regression, we apply it separately to each group in the hierarchy. If
the regression confirms the dependency between sizes and times, we compute the deviation of
time logarithms by a different expression, given in the last line of Figure 11. For example, the
deviation values for alpine are as shown in Figure 15. Note that the deviations do not change

21

if we multiply all times by the same factor, which means that they do not depend on the speed
of a specific computer.

For example, the deviation values for alpine are as shown in Figure 15. We give the devi-
ations computed without the regression in Figure 15(b), and the deviations with the regression
in Figure 15(c).

We may estimate the expected gain for a new problem by averaging the gains of the sample
problems in the same leaf group. Alternatively, we may use a larger sample from one of its
ancestors. The leaf group has less data than its ancestors, but the deviation of these data is
smaller, and we need to analyze this trade-off when selecting between the leaf group and its
ancestors.

We present a heuristic for selecting between a group and its parent based on two tests.
The first test shows the difference between the distribution of the group’s problems and the
distribution of the other problems in the parent’s sample. If the two distributions are different,
we use the group rather than its parent. If not, we perform the second test, to determine
whether the group’s sample provides a more accurate estimate than the parent’s sample. We
now describe the two tests in detail.

If we do not use the regression, the first test is the statistical t-test that shows whether the
mean of the group’s time logarithms differs from the mean of the other time logarithms in the
parent’s sample. We perform the test separately for successes and failures. In the experiments,
we have considered the means different when we can reject the null-hypothesis that they are
equal with the 0.75 confidence. If we use the regression, then we apply a different t-test;
specifically, we determine whether the regression lines are different with the 0.75 confidence.

A statistically significant difference for either successes or failures shows that the distribution
of the group’s running times differs from the distribution of the other problems in the group’s
parent, which means that we should use the group rather than its parent.

For example, suppose that we use the data in Tables 1, 3, and 6 with the hierarchy in
Figure 15(a), and we need to estimate alpine’s gain on a new problem that involves the
delivery of packages within a city. We consider the choice between the corresponding leaf group
and its parent; in this example, we do not use the regression. The estimated mean of the
success-time logarithms for the package-delivery problems is 4.07, and its standard deviation is
0.20. The estimated mean for the other problems in the parent group is 4.03, and its deviation is
0.16. The difference between the two means is not statistically significant. Since the container-
transportation sample has only one failure, we cannot estimate the deviation of its failure
logarithms; thus, the difference between the failure-logarithm means is also insignificant.

The second test is the comparison of the standard deviations of the mean estimates for the
group and its parent. The deviation of the mean estimate is equal to the deviation of the time
logarithms divided by the square root of the sample size, TimeDev√

n
. We compute it separately

for successes and failures, and use it as an indicator of the sample’s accuracy in estimating the
gain; the smaller the value, the greater the accuracy.

If the group’s deviation of the mean estimate is smaller than that of the group’s parent,
for either successes or failures, then the group’s sample is likely to provide a more accurate
estimate; thus, we prefer the group to its parent. On the other hand, if the parent’s deviation
is smaller for both successes and failures, then we use the parent.

Suppose that we apply the second test for estimating alpine’s gain on within-city package
delivery. The standard deviation of the success-time estimate for the leaf group is 0.20, and
the deviation for its parent is 0.16. The deviation of the failure-time estimate is also smaller

22

using leaf using the heuristic
groups top group group selection

without problem sizes
apply’s bound selection 11.8 10.5 12.1
delay’s bound selection 7.0 4.7 7.5
alpine’s bound selection 19.5 18.1 19.5
method selection 13.1 11.1 13.4

with problem sizes
apply’s bound selection 16.3 11.1 16.8
delay’s bound selection 12.1 5.2 12.0
alpine’s bound selection 22.6 18.4 22.6
method selection 19.4 13.7 21.0

Table 7: Per-problem gains in learning experiments, for different group-selection techniques.

for the parent; thus, we prefer the use of the parent.
After selecting between the leaf group and its parent, we apply the same two tests to choose

between the resulting “winner” and the group’s grandparent; then, we compare the new winner
with the great-grandparent, and so on. In the example, we compare the selected parent group
with the top-level node (Figure 15a). After applying the first test, we find out that the mean of
the group’s success logarithms is 4.03, whereas the corresponding mean for the other problems
in the top node’s sample is 5.39. The difference is statistically significant; thus, we prefer the
group of within-city problems to the top-level group.

The running time of the statistical computations is proportional to the height of a hierarchy.
For n successes, m failures, and k interrupts, the amortized time of performing the regressions,
selecting a group, and scaling the times to the size of the new problem is ((n+m+ k) · 4 +20) ·
height · 10−4 seconds, which is still small compared to prodigy’s search time.

In Table 7, we present the results of using the hierarchy of Figure 15. We ran the bound-
selection experiments on a sequence of seventy problems, constructed by interleaving the prob-
lem sets of Tables 1, 3, and 6. We used a three-times longer sequence of transportation problems
for the method-selection experiments. The first column includes the results of using only leaf
groups in estimating the gains. The second column shows the results of using the top-level
group for all estimates, which means that the algorithm does not distinguish among the three
problem types. The third column contains the results of using the hierarchy with the heuristic
for group selection. The complete hierarchy gives larger gains than either the leaf groups or
the top-level group; however, the improvement is not large.

We next use a similarity hierarchy in selecting a time bound for phone calls. We consider
the outcomes of sixty-three calls to six different people. We have called two of them, say A and
B, at their office phones; we have called the other four, C, D, E, and F , at their homes. We
show the similarity hierarchy and call outcomes in Figure 16.

For each group in the hierarchy, we give the estimated mean of success and failure time
logarithms (“mean”), the deviation of the time logarithms (“deviation”), and the deviation
of the mean estimate (“mean’s dev”). The mean of success-time logarithms for office calls is
significantly different from that for home calls, which implies that the distribution of office-
call times differs from home-call times. The mean success logarithms for persons A and B do
not differ significantly from each other. Similarly, the success means of C, D, and E are not

23

outcomes
of calls to F

10.15 f

7.50 s

11.65 f

10.15 f 7.55 s

12.40 f

7.45 s

6.80 s 2.60 s

6.70 s

7.60 s

8.10 s

6.05 s

4.95 s

7.90 s 9.70 s

2.85 s

of calls to C
outcomesoutcomes

of calls to A

2.30 s

1.95 s

2.55 s

2.75 s

3.10 s

2.05 s

3.20 s

2.50 s
200.0 b

200.0 b

200.0 b

outcomes
of calls to B

1.05 s 3.25 s

1.85 s 17.20 s

200.0 b

200.0 b

2.30 s

4.85 s

200.0 b

0.50 s

8.30 s
7.15 s

2.05 s
7.40 s
9.05 s

20.10 f

19.75 f

1.70 s
7.80 s

6.05 s
8.35 s
8.75 s
9.65 s

19.30 f

outcomes
of calls to D

mean:
deviation:
mean’s dev:

successes failures

NONE

calls to an office phone

0.19

0.92
0.89

mean:
deviation:
mean’s dev:

mean:
deviation:
mean’s dev:

successes failures

0.09
0.55

1.84

0.11
0.32

2.72

calls to a home phone

mean:
deviation:
mean’s dev:

failures

0.11
0.32

2.72
0.72

0.10

1.55mean:
deviation:
mean’s dev:

successes

all phone calls

failures

calls to A

mean:
deviation:
mean’s dev:

successes

NONE

0.06
0.18

0.92

failures

mean:
deviation:
mean’s dev:

successes

NONE

calls to B

0.43
1.13

0.92

failures

calls to C

mean:
deviation:
mean’s dev:

successes

0.14
0.44

1.77

NONE

1.81

0.18
0.60

mean:
deviation:
mean’s dev:

failures

calls to D

0.01
0.02

2.98

mean:
deviation:
mean’s dev:

successes

mean:
deviation:
mean’s dev:

failures

calls to E

mean:
deviation:
mean’s dev:

successes

0.17
0.50

1.89

0.08
0.11

2.98 mean:
deviation:
mean’s dev:

failures

mean:
deviation:
mean’s dev:

successes

calls to F

2.02
0.007

0.004

0.05
0.20

2.40

outcomes

5.60 s

8.85 s

9.70 s

5.45 s

9.90 s

21.25 f

8.10 s

2.45 s

18.30 f
4.15 s

of calls to E

11.25 s

Figure 16: Similarity hierarchy and call outcomes in the phone-call domain.

significantly different from the mean of the home-call group. On the other hand, the success
mean of F is significantly different from the other people in the home-call group. Finally, the
failure-logarithm means of D, E, and F are all significantly different from each other.

We have run incremental-learning experiments with the reward of 90.0. An experiment with
the use of leaf groups for all estimates has yielded the gain of 57.8 per call. We have then run an
experiment using the home-call and office-call groups for all estimates, without distinguishing
among different people within these groups, and obtained the average gain of 56.3. We have
next used the top-level group for all estimates, which has yielded 55.9 per call. Finally, we have
experimented with the heuristic choice between the leaf groups and their ancestors, and earned
59.8 per call. If we knew all time distributions in advance, determined the optimal time bound
for each leaf, and used these optimal bounds for all calls, then the average gain would be 61.9.

The phone-call experiments have confirmed that a similarity hierarchy improves the perfor-
mance; note that the gain obtained with the hierarchy is much closer to the optimal than the
gain from the use of the leaf groups or the top-level group.

24

8 Artificial tests

We give the results of testing the selection mechanism on artificially generated performance
data. The “running times” in these tests are values produced by a random-number generator,
which allows controlled experiments with known distributions. The learning mechanism has
proved effective for all tested distributions, and we have not found a significant difference in
performance for different distributions. The experiments have shown that the gain obtained
in the incremental learning is usually close to the optimal. They have also shown that the
regression improves the performance when there is a correlation between size and time, and
does not worsen the results when there is no correlation.

We have considered four distribution types:

Normal: The normal distribution of success and failure times corresponds to the situation
when the running time for most problems is close to some “typical” value, and problems
with much smaller or much larger times are rare.

Log-Normal: The distribution is called log-normal if time logarithms are distributed normally;
intuitively, it occurs when the “complexity” of most problems is close to some typical
complexity, and the problem-solving time grows exponentially with the complexity.

Uniform: The running times belong to some fixed interval, and all values in this interval are
equally likely.

Log-Uniform: The logarithms of running times are distributed uniformly; intuitively, the
complexity of problems is within some fixed interval, and the running time grows expo-
nentially with the complexity.

For each of the four distribution types, we have run multiple tests, varying the values of the
following parameters:

Success and failure probabilities: We have varied the probabilities of success, failure, and
infinite looping.

Mean and deviation: We have experimented with different values of the mean and standard
deviation of success-time and failure-time distributions.

Reward: We have set the reward to 100.0 in all experiments.

Length of the problem sequence: We have tested the incremental learning on sequences of
50, 150, and 500 problems.

Correlation between sizes and times: We have run tests without and with problem sizes,
and experimented with three different correlations between size logarithms and time log-
arithms: 0, 0.6, and 0.9.

We have run fifty independent experiments for each setting of the parameters and averaged
their results; thus, every graph shows the average of fifty experiments.

Since the learning technique has proved effective in all tests, we conjecture that it also works
well for most other distributions. We plan to experiment with a wider variety of distributions
and identify situations in which the technique does not give good results.

25

0 50
0

20

40

60

normal

pe
r−

pr
ob

lem
 ga

in

0 50
0

20

40

60

se
lec

ted
 bo

un
d

0 50
0

20

40

60

op
tim

al
bo

un
d

0 50
0

20

40

60

log−normal

0 50
0

20

40

60

0 50
0

20

40

60

0 50
0

20

40

60

uniform

0 50
0

20

40

60

0 50
0

20

40

60

0 50
0

20

40

60

log−uniform

0 50
0

20

40

60

0 50
0

20

40

60

Figure 17: Per-problem gains (top row), time bounds (middle row), and estimates of the optimal
bounds (bottom row) in the incremental learning on 50-problem sequences. The crosses mark the
optimal time bounds, and the circles show the expected gains for the optimal bounds.

Short and long problem sequences

We first give the results of learning a time bound on sequences of 50 and 500 problems, without
the use of problem sizes. The success probability in these experiments is 1/2, the failure
probability is 1/4, and the probability of infinite looping is also 1/4. The mean of success times
is 20.0 and their standard deviation is 8.0; the failure-time mean is 10.0 and standard deviation
is 4.0. We have experimented with all four distribution types; for each distribution, we have
run fifty experiments and averaged their results.

In Figure 17, we summarize the results for 50-problem sequences. The horizontal axes in
all graphs show the problem’s number in a sequence. The top row of graphs gives the average
per-problem gain obtained up to the current problem; for example, the left end of each curve
shows the average gain for the first five problems, and the right end gives the average for all fifty
problems. The circles mark the gain that the system would obtain if it knew the distribution in
advance and used the optimal time bound for all problems. The vertical bars show the width of
the distribution of gain values obtained in different experiments. Each bar covers two standard
deviations up and down, which means that about 95% of the experiments fall within it. The
middle row of graphs shows the selected time bounds, and the bottom row gives the system’s
estimates of the optimal bounds; recall that the selected bounds are larger than the optimal,
to encourage exploration. The crosses mark the values of the optimal bounds; note that the
system’s estimates of the optimal bounds converge to their real values.

In Figure 18, we give similar results for 500-problem sequences. In these experiments, per-
problem gains come closer to the optimal values, but still do not reach them. The difference
between the obtained and optimal gains comes from losses during early stages of learning and
from the use of larger-than-optimal bounds.

26

0 500
0

20

40

60

normal

pe
r−

pr
ob

lem
 ga

in

0 500
0

20

40

60

se
lec

ted
 bo

un
d

0 500
0

20

40

60

op
tim

al
bo

un
d

0 500
0

20

40

60

log−normal

0 500
0

20

40

60

0 500
0

20

40

60

0 500
0

20

40

60

uniform

0 500
0

20

40

60

0 500
0

20

40

60

0 500
0

20

40

60

log−uniform

0 500
0

20

40

60

0 500
0

20

40

60

Figure 18: Per-problem gains (top row), time bounds (middle row), and estimates of the optimal
bounds (bottom row) in the incremental learning on 500-problem sequences.

Varying success and failure probabilities

We give the results of learning a time bound for different probabilities of successes and failures.
The means and standard deviations of the success and failure times are the same as in the
previous experiments.

We summarize the results in Figure 19. The top row of graphs is for a method that succeeds,
fails, and goes into an infinite loop equally often; that is, the probability of each outcome is 1/3.
The middle row gives the results for a method that succeeds half of the time, fails half of the
time, and never goes into an infinite loop. Finally, the bottom row is for a method that succeeds
half of the time and loops forever otherwise. The solid lines show the average per-problem gain
up to the current problem; the dotted lines are the selected time bounds; and the dashed lines
are the estimates of the optimal bounds. The crosses mark the optimal bounds, and the circles
are the expected gains for the optimal bounds.

Note that, when the probability of infinite looping is zero (middle row), any large time
bound gives near-optimal results because the system never needs to interrupt a method. Thus,
the system never changes the initial time bound and gets near-optimal gains from the very
beginning.

Varying the mean of time distributions

We now vary the mean value of failure times. We keep the mean success time equal to 20.0
with standard deviation 8.0, and experiment with failure means of 10.0 with deviation 4.0, 20.0
with deviation 8.0, and 40.0 with deviation 16.0; we give the results in Figure 20. The gains
for normal and log-normal distributions come closer to the optimal values than for uniform and
log-uniform distributions; however, the difference is not statistically significant.

27

0 50
0

50

100

normal

su
cc

 1
/3

,
fa

il 1
/3

0 50

0

50

100

su
cc

 1
/2

,
fa

il 1
/2

0 50

0

50

100

su
cc

 1
/2

,
fa

il 0

0 50
0

50

100

log−normal

0 50

0

50

100

0 50

0

50

100

0 50
0

50

100

uniform

0 50

0

50

100

0 50

0

50

100

0 50
0

50

100

log−uniform

0 50

0

50

100

0 50

0

50

100

Figure 19: Per-problem gains (solid lines), time bounds (dotted lines), and estimates of the optimal
bounds (dashed lines) for different success and failure probabilities. The crosses mark the optimal
time bounds, and the circles show the expected gains for the optimal bounds. We give the values of
success probability (“succ”) and failure probability (“fail”) to the left of each row.

0 50
0

20

40

60

80
normal

fai
l m

ea
n i

s 1
0.0

0 50
0

20

40

60

80

fai
l m

ea
n i

s 2
0.0

0 50
0

20

40

60

80

fai
l m

ea
n i

s 4
0.0

0 50
0

20

40

60

80
log−normal

0 50
0

20

40

60

80

0 50
0

20

40

60

80

0 50
0

20

40

60

80
uniform

0 50
0

20

40

60

80

0 50
0

20

40

60

80

0 50
0

20

40

60

80
log−uniform

0 50
0

20

40

60

80

0 50
0

20

40

60

80

Figure 20: Per-problem gains (solid lines), time bounds (dotted lines), and estimates of the optimal
bounds (dashed lines) for different mean values of failure times. The mean of success times is 20.0 in
all experiments.

28

0 50
0

10

20

normal

co
rre

lat
ion

 is
 0.

9

0 50
0

10

20

co
rre

lat
ion

 is
 0.

6

0 50
0

10

20

co
rre

lat
ion

 is
 0

0 50
0

10

20

log−normal

0 50
0

10

20

0 50
0

10

20

0 50
0

10

20

uniform

0 50
0

10

20

0 50
0

10

20

0 50
0

10

20

log−uniform

0 50
0

10

20

0 50
0

10

20

Figure 21: Per-problem gains without sizes (dashed lines) and with sizes (solid lines), for different
correlations between size logarithms and time logarithms.

Problem sizes

We compare the gains obtained without and with the regression. Problem sizes in this exper-
iment are natural numbers between 1 and 10, and the logarithms of mean success and failure
times are proportional to the problem-size logarithms. We have adjusted the deviation values
to obtain desired correlations between time logarithms and size logarithms. We have used the
correlation of 0.9 in the first series of experiments and 0.6 in the second series. Finally, we
have run experiments with zero correlation; the mean times in this series were the same for all
problem sizes.

We give the results in Figure 21, where the dashed lines show the average per-problem gains
without the regression, and the solid lines give the gains with the regression. The use of the
regression improves the performance, and the improvement is greater for a larger correlation.
If there is no correlation, the system disregards the results of the regression and performs
identically without and with sizes.

Method selection

Finally, we show the results of the incremental selection among three problem-solving methods
on 150-problem sequences. In the first series of experiments, we have adjusted mean success
and failure times in such a way that the optimal per-problem gain for the first method is 10%
larger than that for the second method and 20% larger than that for the third method.

We give the results in Figure 22. The top row shows the average per-problem gain with-
out the regression (dashed lines) and with the regression (solid lines). The circles mark the
expected gains for the optimal time bounds without the regression. The other two rows give
the probability of choosing each method, for the experiments without and with problem sizes.
The distance from the bottom of the graph to the lower curve is the probability of selecting
the first method, the distance between the two curves is the chance of selecting the second

29

0 100
0

5

10

15

20

25

pe
r−

pr
ob

lem
 ga

ins

normal

0 100
0

0.5

1

 p
ro

b.
w/

o s
ize

s

0 100
0

0.5

1

pr
ob

. w
/ s

ize
s

0 100
0

5

10

15

20

25

log−normal

0 100
0

0.5

1

0 100
0

0.5

1

0 100
0

5

10

15

20

25

uniform

0 100
0

0.5

1

0 100
0

0.5

1

0 100
0

5

10

15

20

25

log−uniform

0 100
0

0.5

1

0 100
0

0.5

1

Figure 22: Incremental selection among three methods, where the average gain for the first method
is 10% larger than that for the second method and 20% larger than that for the third method. We
show the average per-problem gains in the experiments without and with the regression (the top row
of graphs), and the probability of selecting each method (the other two rows).

method, and the distance from the upper curve to the top is the third method’s chance. The
graphs show that the probability of selecting the first method, which gives the highest gain,
increases in the process of learning. The probability of selecting the third method, which is the
worst-performing, decreases faster than that of the second method.

In the second series of experiments, the optimal gain of the first method is 30% larger than
that of the second method and 60% larger than that of the third method. We give the results
in Figure 23; note that the probability of selecting the first method grows much faster, due to
the larger difference in the expected gains.

9 Conclusions and extensions

We have stated the task of selecting among available problem-solving methods as a statistical
problem, derived an approximate solution, and built a system for choosing the most effective
method. The system combines exploitation of past experience with exploration of new alter-
natives. It can use an approximate measure of problem sizes and information about similarity
between problems. The selection technique has proved effective for all tested distributions of
running times; it gives good results even when the distributions do not satisfy the assumptions
of the statistical analysis.

We have implemented heuristics that enhance the statistical technique [Fink, 2003], although
we have not used them in the described experiments. In particular, the system allows the user to
provide a prediction of the gains for different methods, and then combines the user’s prediction
with the statistical estimate. If the selected method has failed to solve a problem, the system
can choose another method for a second attempt to find a solution; it re-evaluates the gain
estimates to incorporate the knowledge that the first attempt has failed. Finally, we provide

30

0 100
0

5

10

15

20

25

pe
r−

pr
ob

lem
 ga

ins

normal

0 100
0

0.5

1

 p
ro

b.
w/

o s
ize

s

0 100
0

0.5

1

pr
ob

. w
/ s

ize
s

0 100
0

5

10

15

20

25

log−normal

0 100
0

0.5

1

0 100
0

0.5

1

0 100
0

5

10

15

20

25

uniform

0 100
0

0.5

1

0 100
0

0.5

1

0 100
0

5

10

15

20

25

log−uniform

0 100
0

0.5

1

0 100
0

0.5

1

Figure 23: Incremental selection among three methods, where the average gain for the first method
is 30% larger than that for the second method and 60% larger than that for the third method.

a mechanism for combining if-then preference rules for method selection with the numeric
estimates.

The statistical model raises many open problems, which include relaxing the simplifying
assumptions, extending the model to account for more features of real-world situations, and
improving the heuristics used with statistical estimates. To make the model more flexible, we
need to provide a mechanism for switching the method and revising the time bound during the
search for a solution. We should also allow interleaving of several promising methods, which
is often more effective than sticking to one method [Howe et al., 1999]. Finally, we need to
develop a means for learning a similarity hierarchy automatically, to minimize the deviation of
time logarithms within similarity groups.

Acknowledgments

I am grateful to Svetlana Vayner, who helped to construct the statistical model and provided
a thorough feedback on all ideas. I owe thanks to Herbert Simon, Jaime Carbonell, Manuela
Veloso, Martha Pollack, Karen Haigh, Henry Rowley, Josh Johnson, and Hong Tang for their
valuable comments and suggestions.

The research has been sponsored in part by the Wright Laboratory, Aeronautical Systems
Center, Air Force Materiel Command, usaf, and Defense Advanced Research Project Agency
(darpa) under grant number F33615-93-1-1330, and by Research and Creative Grant Scholar-
ship program at the University of South Florida.

References

[Allen and Minton, 1996] John A. Allen and Steven Minton. Selecting the right heuristic algo-
rithm: Runtime performance predictors. In Gordon McCalla, editor, Advances in Artificial

31

Intelligence: The Eleventh Biennial Conference of the Canadian Society for Computational
Studies of Intelligence, pages 41–53. Springer-Verlag, Berlin, Germany, 1996.

[Bacchus and Yang, 1992] Fahiem Bacchus and Qiang Yang. The expected value of hierarchical
problem-solving. In Proceedings of the Tenth National Conference on Artificial Intelligence,
pages 369–374, 1992.

[Blumer et al., 1987] Anselm Blumer, Andrzej Ehrenfeucht, David Haussler, and Manfred K.
Warmuth. Occam’s razor. Information Processing Letters, 24(6):377–380, 1987.

[Breese and Horvitz, 1990] John S. Breese and Eric J. Horvitz. Ideal reformulation of belief
networks. In Proceedings of the Sixth Conference on Uncertainty in Artificial Intelligence,
pages 64–72, 1990.

[Cohen, 1992] William W. Cohen. Using distribution-free learning theory to analyze solution-
path caching mechanisms. Computational Intelligence, 8(2):336–375, 1992.

[Cohen, 1995] Paul R. Cohen. Empirical Methods for Artificial Intelligence. mit Press, Cam-
bridge, ma, 1995.

[Fink, 2003] Eugene Fink. Changes of Problem Representation: Theory and Experiments.
Springer Verlag, Berlin, Germany, 2003.

[Gentner and Stevens, 1983] Dedre Gentner and Albert L. Stevens, editors. Mental Models.
Lawrence Erlbaum Associates, Mahwah, nj, 1983.

[Hansen and Zilberstein, 1996] Eric A. Hansen and Shlomo Zilberstein. Monitoring the progress
of anytime problem-solving. In Proceedings of the Thirteenth National Conference on Artifi-
cial Intelligence, pages 1229–1234, 1996.

[Hansson and Mayer, 1989] Othar Hansson and Andrew Mayer. Heuristic search as evidential
reasoning. In Proceedings of the Fifth Workshop on Uncertainty in Artificial Intelligence,
pages 152–161, 1989.

[Horvitz, 1988] Eric J. Horvitz. Reasoning under varying and uncertain resource constraints.
In Proceedings of the Seventh National Conference on Artificial Intelligence, pages 111–116,
1988.

[Howe et al., 1999] Adele E. Howe, Eric Dahlman, Christopher Hansen, Michael Scheetz, and
Anneliese von Mayrhauser. Exploiting competitive planner performance. In Proceedings of
the Fifth European Conference on Planning, pages 62–72, 1999.

[Knoblock, 1993] Craig A. Knoblock. Generating Abstraction Hierarchies: An Automated Ap-
proach to Reducing Search in Planning. Kluwer Academic Publishers, Boston, ma, 1993.

[Knoblock, 1994] Craig A. Knoblock. Automatically generating abstractions for planning. Ar-
tificial Intelligence, 68(2):243–302, 1994.

[Mendenhall et al., 1999] William Mendenhall, Robert J. Beaver, and Barbara M. Beaver. In-
troduction to Probability and Statistics. Duxbury Press, Boston, ma, tenth edition, 1999.

32

[Minton, 1996] Steven Minton. Automatically configuring constraint satisfaction programs: A
case study. Constraints: An International Journal, 1(1–2):7–43, 1996.

[Mouaddib and Zilberstein, 1995] Abdelillah Mouaddib and Shlomo Zilberstein. Knowledge-
based anytime computation. In Proceedings of the Fourteenth International Joint Conference
on Artificial Intelligence, pages 775–781, 1995.

[Newell and Simon, 1972] Allen Newell and Herbert A. Simon. Human Problem Solving. Pren-
tice Hall, Upper Saddle River, nj, 1972.

[Pérez, 1995] M. Alicia Pérez. Learning Search Control Knowledge to Improve Plan Quality.
PhD thesis, School of Computer Science, Carnegie Mellon University, 1995. Technical Report
cmu-cs-95-175.

[Polya, 1957] George Polya. How to Solve It. Doubleday, Garden City, ny, second edition,
1957.

[Russell et al., 1993] Stuart J. Russell, Devika Subramanian, and Ronald Parr. Provably
bounded optimal agents. In Proceedings of the Thirteenth International Joint Conference
on Artificial Intelligence, pages 338–344, 1993.

[Russell, 1990] Stuart J. Russell. Fine-grained decision-theoretic search control. In Proceedings
of the Sixth Conference on Uncertainty in Artificial Intelligence, pages 436–442, 1990.

[Simon, 1989] Herbert A. Simon. Models of Thought, volume ii. Yale University Press, New
Haven, ct, 1989.

[Stone et al., 1994] Peter Stone, Manuela M. Veloso, and Jim Blythe. The need for different
domain-independent heuristics. In Proceedings of the Second International Conference on
Artificial Intelligence Planning Systems, pages 164–169, 1994.

[Tabachneck-Schijf et al., 1997] Hermina J. M. Tabachneck-Schijf, Anthony M. Leonardo, and
Herbert A. Simon. CaMeRa: A computational model of multiple representations. Cognitive
Science, 21(3):305–350, 1997.

[Valiant, 1984] Leslie G. Valiant. A theory of the learnable. Communications of the Association
for Computing Machinery, 27(11):1134–1142, 1984.

[Veloso and Stone, 1995] Manuela M. Veloso and Peter Stone. flecs: Planning with a flexible
commitment strategy. Journal of Artificial Intelligence Research, 3:25–52, 1995.

[Veloso et al., 1995] Manuela M. Veloso, Jaime G. Carbonell, M. Alicia Pérez, Daniel Borrajo,
Eugene Fink, and Jim Blythe. Integrating planning and learning: The prodigy architecture.
Journal of Experimental and Theoretical Artificial Intelligence, 7(1):81–120, 1995.

[Veloso, 1994] Manuela M. Veloso. Planning and Learning by Analogical Reasoning. Springer-
Verlag, Berlin, Germany, 1994.

33

