Outline

- Defining an RL problem
 - Markov Decision Processes

- Solving an RL problem
 - Dynamic Programming
 - Monte Carlo methods
 - Temporal-Difference learning

- Miscellaneous
 - state representation
 - function approximation
 - rewards
Markov Decision Process (MDP)

- set of states S, set of actions A, initial state S_0
- transition model $P(s,a,s')$
 - $P(\{1,1\}, \text{up}, \{1,2\}) = 0.8$
- reward function $r(s)$
 - $r(\{4,3\}) = +1$
- goal: maximize cumulative reward in the long run
- policy: mapping from S to A
 - $\pi(s)$ or $\pi(s,a)$

- reinforcement learning
 - transitions and rewards usually not available
 - how to change the policy based on experience
 - how to explore the environment

Dynamic programming

- Main idea
 - use value functions to structure the search for good policies
 - need a perfect model of the environment

- Two main components
 - policy evaluation: compute V^π from π
 - policy improvement: improve π based on V^π

- start with an arbitrary policy
- repeat evaluation/improvement until convergence
Policy/Value iteration

- **Policy iteration**
 \[\pi_0 \rightarrow E V^{\pi_0} \rightarrow I \pi_1 \rightarrow E V^{\pi_1} \rightarrow I \pi^* \rightarrow E V^* \]
 - two nested iterations; too slow
 - don’t need to converge to \(V^* \)
 - just move towards it

- **Value iteration**
 \[V_{k+1}(s) = \max_a \sum_{s'} P_{ss'}^a \left[r_{ss'}^a + \gamma V_k(s') \right] \]
 - use Bellman optimality equation as an update
 - converges to \(V^* \)

Using DP

- need complete model of the environment and rewards
 - robot in a room
 - state space, action space, transition model

- can we use DP to solve
 - robot in a room?
 - back gammon?
 - helicopter?

- DP bootstraps
 - updates estimates on the basis of other estimates
Monte Carlo methods

- don’t need full knowledge of environment
 - just experience, or
 - simulated experience

- but similar to DP
 - policy evaluation, policy improvement

- averaging sample returns
 - defined only for episodic tasks
 - episodic (vs. continuing) tasks
 - “game over” after N steps
 - optimal policy depends on N; harder to analyze

Monte Carlo policy evaluation

- Want to estimate $V^\pi(s)$
 - expected return starting from s and following π
 - estimate as average of observed returns in state s

- First-visit MC
 - average returns following the first visit to state s

\[
V^\pi(s) = \frac{1}{4} (2 + 1 - 5 + 4) = 0.5
\]
Monte Carlo control

- V^π not enough for policy improvement
 - need exact model of environment
 \[
 \pi^*(s) = \arg\max_{\pi \in \Pi} \sum_{s' \in S} P_{ss'}V^\pi(s')
 \]
- Estimate $Q^\pi(s,a)$
 \[
 \pi'(s) = \arg\max_{\pi} Q^\pi(s, a)
 \]
- MC control
 \[
 \pi_0 \rightarrow E Q_{\pi_0} \rightarrow I \pi_1 \rightarrow E Q_{\pi_1} \rightarrow I \ldots \rightarrow I \pi^* \rightarrow E Q^*
 \]
 - update after each episode
- Non-stationary environment
 \[
 V(s) \leftarrow V(s) + \alpha[R - V(s)]
 \]
- A problem
 - greedy policy won’t explore all actions

Maintaining exploration

- Deterministic/greedy policy won’t explore all actions
 - don’t know anything about the environment at the beginning
 - need to try all actions to find the optimal one

- Maintain exploration
 - use soft policies instead: $\pi(s,a) > 0$ (for all s,a)

- ϵ-greedy policy
 - with probability $1-\epsilon$ perform the optimal/greedy action
 - with probability ϵ perform a random action
 - will keep exploring the environment
 - slowly move it towards greedy policy: $\epsilon \to 0$
Simulated experience

- 5-card draw poker
 - s0: A♣, A♦, 6♠, A♥, 2♠
 - a0: discard 6♠, 2♠
 - s1: A♣, A♦, A♥, A♠, 9♠ + dealer takes 4 cards
 - return: +1 (probably)

- DP
 - list all states, actions, compute P(s,a,s')
 - P([A♣,A♦,6♠,A♥,2♠], [6♠,2♠], [A♠,9♠,4]) = 0.00192

- MC
 - all you need are sample episodes
 - let MC play against a random policy, or itself, or another algorithm

Temporal Difference Learning

- Combines ideas from MC and DP
 - like MC: learn directly from experience (don’t need a model)
 - like DP: bootstrap
 - works for continuous tasks, usually faster than MC

- Constant-alpha MC:
 - have to wait until the end of episode to update
 \[V(s_t) \leftarrow V(s_t) + \alpha [R_t - V(s_t)] \]

- simplest TD
 - update after every step, based on the successor
 \[V(s_t) \leftarrow V(s_t) + \alpha [r_{t+1} + \gamma V(s_{t+1}) - V(s_t)] \]
TD in passive learning

- TD(0) key idea:
 - adjust the estimated utility value of the current state based on its immediately reward and the estimated value of the next state.

- The updating rule
$$V(s_t) \leftarrow V(s_t) + \alpha [r_{t+1} + \gamma V(s_{t+1}) - V(s_t)]$$

- α is the learning rate parameter
- Only when α is a function that decreases as the number of times a state has been visited increased, then can $V(s)$ converge to the correct value.

Algorithm TD(λ)
(not in Russell & Norvig book)

- Idea: update from the whole epoch, not just on state transition.
$$V(s_t) \leftarrow V(s_t) + \alpha \sum_{k=1}^{\infty} \lambda^{t-k} [r_{t+k+1} + V(s_{t+k+1}) - V(s_t)]$$

- Special cases:
 - $\lambda=1$: LMS
 - $\lambda=0$: TD
- Intermediate choice of λ (between 0 and 1) is best.
- Interplay with α …
MC vs. TD

- Observed the following 8 episodes:
 - A – 0, B – 0 B – 1 B – 1 B - 1
 - B – 1 B – 1 B – 1 B – 0

- MC and TD agree on V(B) = 3/4

- MC: V(A) = 0
 - converges to values that minimize the error on training data

- TD: V(A) = 3/4
 - converges to ML estimate of the Markov process
The TD learning curve

![Graph showing the TD learning curve](image)

Another model free method—TD-Q learning

- Define Q-value function
 \[V(s) = \max_a Q(s, a) \]

- Q-value function updating rule
 - See subsequent slides

- Key idea of TD-Q learning
 - Combined with temporal difference approach

- Rule to choose the action to take
 \[a = \arg\max_a Q(s, a) \]

\[\Pi(s) = V(s) + V \arg\max_a \sum_s P_{sa}(s) V(s) \]
Sarsa

- Again, need $Q(s,a)$, not just $V(s)$

$$Q(s_t, a_t) \leftarrow Q(s_t, a_t) + \alpha [r_{t+1} + \gamma Q(s_{t+1}, a_{t+1}) - Q(s_t, a_t)]$$

$$V(s_t) \leftarrow V(s_t) + \alpha [r_{t+1} + \gamma V(s_{t+1}) - V(s_t)]$$

- Control
 - start with a random policy
 - update Q and π after each step
 - again, need ϵ-soft policies

Q-learning

- Before: on-policy algorithms
 - start with a random policy, iteratively improve
 - converge to optimal

- Q-learning: off-policy
 - use any policy to estimate Q
 $$Q(s_t, a_t) \leftarrow Q(s_t, a_t) + \alpha [r_{t+1} + \gamma \max_a Q(s_{t+1}, a) - Q(s_t, a_t)]$$

 - Q directly approximates Q^* (Bellman optimality eqn)
 - independent of the policy being followed
 - only requirement: keep updating each (s,a) pair

- Sarsa
 $$Q(s_t, a_t) \leftarrow Q(s_t, a_t) + \alpha [r_{t+1} + \gamma Q(s_{t+1}, a_{t+1}) - Q(s_t, a_t)]$$
For each pair \((s, a)\), initialize \(Q(s,a)\)

Observe the current state \(s\)

Loop forever

\[
\begin{align*}
&\text{Select an action } a \text{ (optionally with } \epsilon\text{-exploration) and execute it} \\
&a = \arg \max_a Q(s, a) \\
&\text{Receive immediate reward } r \text{ and observe the new state } s' \\
&\text{Update } Q(s,a) \\
Q(s, a) &\leftarrow Q(s,a) + \alpha[r_{t+1} + \gamma \max_{a'} Q(s', a') - Q(s,a)] \\
&s' = s' \\
\end{align*}
\]

Exploration

- Tradeoff between exploitation (control) and exploration (identification)

- Extremes: greedy vs. random acting (n-armed bandit models)

Q-learning converges to optimal Q-values if

- Every state is visited infinitely often (due to exploration),
- The action selection becomes greedy as time approaches infinity, and
- The learning rate \(\alpha\) is decreased fast enough but not too fast (as we discussed in TD learning)
State representation

- pole-balancing
 - move car left/right to keep the pole balanced

- state representation
 - position and velocity of car
 - angle and angular velocity of pole

- what about Markov property?
 - would need more info
 - noise in sensors, temperature, bending of pole

- solution
 - coarse discretization of 4 state variables
 - left, center, right
 - totally non-Markov, but still works
Function approximation

- represent V_t as a parameterized function
 - linear regression, decision tree, neural net, ...
 - linear regression:
 $$V_t(s) = \theta_t^T \phi(s) = \sum_{i=1}^{n} \theta_t(i) \phi_s(i)$$

- update parameters instead of entries in a table
 - better generalization
 - fewer parameters and updates affect "similar" states as well

- TD update
 $$V(s_t) \leftarrow V(s_t) + \alpha \left[r_{t+1} + \gamma V(s_{t+1}) - V(s_t) \right]$$
 $$V(s_t) \times r_{t+1} + \gamma V(s_{t+1})$$
 - treat as one data point for regression
 - want method that can learn on-line (update after each step)

Features

- tile coding, coarse coding
 - binary features
 - a) Irregular
 - b) Log stripes
 - c) Diagonal stripes

- radial basis functions
 - typically a Gaussian
 - between 0 and 1

[Sutton & Barto, Reinforcement Learning]
Splitting and aggregation

- want to discretize the state space
 - learn the best discretization during training

- splitting of state space
 - start with a single state
 - split a state when different parts of that state have different values

- state aggregation
 - start with many states
 - merge states with similar values

Designing rewards

- robot in a maze
 - episodic task, not discounted, +1 when out, 0 for each step

- chess
 - GOOD: +1 for winning, -1 losing
 - BAD: +0.25 for taking opponent’s pieces
 - high reward even when lose

- rewards
 - rewards indicate what we want to accomplish
 - NOT how we want to accomplish it

- shaping
 - positive reward often very “far away”
 - rewards for achieving subgoals (domain knowledge)
 - also: adjust initial policy or initial value function
A Success Story

- **TD Gammon** (Tesauro, G., 1992)
 - A Backgammon playing program.
 - Application of **temporal difference** learning.
 - The basic learner is a neural network.
 - It trained itself to the world class level by playing against itself and learning from the outcome. So smart!!

Case study: Back gammon

- **rules**
 - 30 pieces, 24 locations
 - roll 2, 5: move 2, 5
 - hitting, blocking
 - branching factor: 400

- **implementation**
 - use TD(\(\lambda \)) and neural nets
 - 4 binary features for each
 - no BG expert knowledge

- **results**
 - TD-Gammon 0.0: trained against itself (300,000 games)
 - as good as best previous BG computer program (also by Tesauro)
 - lot of expert input, hand-crafted features
 - TD-Gammon 1.0: add special features
 - TD-Gammon 2 and 3 (2-ply and 3-ply search)
 - 1.5M games, beat human champion
Summary

- Reinforcement learning
 - use when need to make decisions in uncertain environment

- Solution methods
 - dynamic programming
 - need complete model
 - Monte Carlo
 - time difference learning (Sarsa, Q-learning)

- most work
 - algorithms simple
 - need to design features, state representation, rewards

Future research in RL

- Function approximation (& convergence results)
- On-line experience vs. simulated experience
- Amount of search in action selection
- Exploration method (safe?)
- Kind of backups
 - Full (DP) vs. sample backups (TD)
 - Shallow (Monte Carlo) vs. deep (exhaustive)
 - λ controls this in TD(λ)
- Macros
 - Advantages
 - Reduce complexity of learning by learning subgoals (macros) first
 - Can be learned by TD(λ)
 - Problems
 - Selection of macro action
 - Learn models of macro actions (predict their outcome)
 - How do you come up with subgoals
Types of Learning

- **Supervised Learning**
 - Training data: \((X, Y)\) (features, label)
 - Predict \(Y\), minimizing some loss.
 - Regression, Classification.

- **Unsupervised Learning**
 - Training data: \(X\) (features only)
 - Find "similar" points in high-dim \(X\)-space.
 - Clustering.

- **Reinforcement Learning**
 - Training data: \((S, A, R)\) (State-Action-Reward)
 - Develop an optimal policy (sequence of decision rules) for the learner so as to maximize its long-term reward.
 - Robotics, Board game playing programs

Where Machine Learning is being used or can be useful?