Machine Learning

10-701/15-781, Fall 2008

Ensemble methods
Boosting from Weak Learners

Lecture 9, October 6, 2008

Reading: Chap. 14.3 C.B book

Project proposal due this Wed

Mid term

> 10 \(\sim 10 \)

> 15 \(\sim 10 \)
The essence of kernel

- Feature mapping, but “without paying a cost”
 - E.g., polynomial kernel
 \[K(x, z) = \left(x^T z + c \right)^d \]
 \[O(n^d) \]
 - How many dimensions we’ve got in the new space?
 - How many operations it takes to compute \(K() \)?

- Kernel design, any principle?
 - \(K(x,z) \) can be thought of as a similarity function between \(x \) and \(z \)
 - This intuition can be well reflected in the following “Gaussian” function
 (Similarly one can easily come up with other \(K() \) in the same spirit)
 \[K(x, z) = \exp \left(- \frac{\|x - z\|^2}{2\sigma^2} \right) \]
 - Is this necessarily lead to a “legal” kernel?
 (in the above particular case, \(K() \) is a legal one, do you know how many dimension \(\phi(x) \) is?)

(3) Structured Prediction

- Unstructured prediction

- Structured prediction
 - Part of speech tagging
 \[x = \text{“Do you want sugar in it?”} \quad \Rightarrow \quad y = \langle \text{verb pron verb noun prep pron} \rangle \]
 - Image segmentation

\[x = \begin{pmatrix} x_{11} & x_{12} & \cdots \\ x_{21} & x_{22} & \cdots \\ \vdots & \vdots & \ddots \end{pmatrix} \quad y = \begin{pmatrix} y_{11} & y_{12} & \cdots \\ y_{21} & y_{22} & \cdots \\ \vdots & \vdots & \ddots \end{pmatrix} \]
OCR example

Sequential structure: $f(x; x_{i+1})$ by y

$F(x, y) \downarrow F(x, f(y))$

Inputs:
- A set of training samples $D = \{(x_i, y_i)\}_{i=1}^N$, where $x_i = [x_1^i, x_2^i, \ldots, x_d^i]$ and $y_i \in C \subseteq \{e_1, e_2, \ldots, e_L\}$

Outputs:
- A predictive function $h(x)$: $y^* = h(x) \triangleq \arg\max_y F(x, y)$

 $F(x, y) = w^T f(x, y)$

Examples:
- SVM: $\max_w \frac{1}{2} w^T w + C \sum_{i=1}^N \xi_i$ s.t. $w^T \Delta f_i(y) \geq 1 - \xi_i$, $\forall i, \forall y_i$

- Logistic Regression: $\max_w \mathcal{L}(D; w) \triangleq \sum_{i=1}^N \log p(y_i|x_i)$

 where $p(y|x) = \frac{\exp{w^T f(x, y)}}{\sum_{y'} \exp{w^T f(x, y')}}$

Classical Classification Models

© Eric Xing @ CMU, 2006-2008
Structured Models

\[h(x) = \arg \max_{y \in \mathcal{Y}(x)} F(x, y) \]

- **Assumptions:**
 - Linear combination of features
 - Sum of partial scores: index \(p \) represents a part in the structure
 - Random fields or Markov network features:

![Diagram showing a structured model with nodes and edges representing features and their interactions.]

Discriminative Learning Strategies

- **Max Conditional Likelihood**
 - We predict based on:
 \[y^* | x = \arg \max_y p_y (y | x) = \frac{1}{Z(w, x)} \exp \left\{ \sum_w w_c f_c(x, y) \right\} \]
 - And we learn based on:
 \[w^* | y, x = \arg \max_w \prod_i p_w (y_i | x_i) = \prod_i \frac{1}{Z(w, x_i)} \exp \left\{ \sum_w w_c f_c(x, y) \right\} \]

- **Max Margin**
 - We predict based on:
 \[y^* | x = \arg \max_y \sum_w w f_c(x, y) = \arg \max_w \arg \max f(x, y) \]
 - And we learn based on:
 \[w^* | y, x = \arg \max_w \min \left\{ w \right\} \min \left\{ f(y_i, x_i) - f(y_i, x) \right\} \]
E.g. Max-Margin Markov Networks

- Convex Optimization Problem:

\[
P_0 \text{(M^3N)} : \min_{w, \xi} \frac{1}{2} \|w\|^2 + C \sum_{i=1}^{N} \xi_i
\]

s.t. \forall i, \forall y \neq y_i : \quad w^T \Delta f_i(x, y) \geq \Delta \ell_i(y) - \xi_i, \quad \xi_i \geq 0,

- Feasible subspace of weights:

\[
F_0 = \{ w : w^T \Delta f_i(x, y) \geq \Delta \ell_i(y) - \xi_i ; \forall i, \forall y \neq y_i \}
\]

- Predictive Function:

\[
h_0(x; w) = \arg \max_{y \in \mathcal{Y}(x)} \mathcal{F}(x, y; w)
\]

OCR Example

- We want:

\[
\arg \max_{\text{word}} w^T f(\text{brace}, \text{word}) = \text{“brace”}
\]

- Equivalently:

\[
\begin{align*}
w^T f(\text{brace}, \text{“brace”}) &> w^T f(\text{brace}, \text{“aaaa”}) \\
w^T f(\text{brace}, \text{“brace”}) &> w^T f(\text{brace}, \text{“aaaab”}) \\
\vdots \\
w^T f(\text{brace}, \text{“brace”}) &> w^T f(\text{brace}, \text{“zzzz”})
\end{align*}
\]

\[\text{a lot!}\]
Min-max Formulation

- Brute force enumeration of constraints:
 \[
 \min \frac{1}{2}||w||^2 \\
 w^T f(x, y^*) \geq w^T f(x, y) + \ell(y^*, y), \quad \forall y
 \]
 - The constraints are exponential in the size of the structure

- Alternative: min-max formulation
 - add only the most violated constraint
 \[
 y' = \arg \max_{y \neq y^*} \{ w^T f(x_i, y) + \ell(y_i, y) \}
 \]
 - adds to QP:
 \[
 w^T f(x_i, y_i) \geq w^T f(x_i, y') + \ell(y_i, y')
 \]
 - Handles more general loss functions
 - Only polynomial # of constraints needed
 - Several algorithms exist ...

Results: Handwriting Recognition

Length: ~8 chars
Letter: 16x8 pixels
10-fold Train/Test
5000/50000 letters
600/6000 words

Models:
- Multiclass-SVMs*
- M^3 nets

* Crammer & Singer 01

Test error (average per-character)
raw pixels quadratic kernel cubic kernel
raw pixels quadratic kernel cubic kernel

better

33% error reduction over multiclass SVMs
Discriminative Learning Paradigms

SVM
\[y = \text{sign}(w^T x + b) \]
\[
\min_{w, b} \frac{1}{2}||w||^2 + C \sum_{i=1}^{n} \xi_i \\
y'(w^T x_i + b) \geq 1 - \xi_i, \quad \forall i
\]

MED
\[y = \text{sign}(f(x, w)) \]
\[
\min_{w} \text{KL}(Q||Q_w) \\
y'(f(x')) \geq \xi_i, \quad \forall i
\]

M3N
\[y = \arg \max_{y \in \mathbb{Y}} P(y | x, w) \]
\[
\min_{w} \frac{1}{2}||w||^2 + C \sum_{i=1}^{n} \xi_i \\
f(x', y) \geq f(x', y') - \xi_i, \quad \forall i, y \neq y'
\]

MED-MN = SMED + Bayesian M3N

See [Zhu and Xing, 2008]

Summary

- Maximum margin nonlinear separator
 - Kernel trick
 - Project into linearly separable space (possibly high or infinite dimensional)
 - No need to know the explicit projection function

- Max-entropy discrimination
 - Average rule for prediction,
 - Average taken over a posterior distribution of \(w \) who defines the separation hyperplane
 - \(P(w) \) is obtained by max-entropy or min-KL principle, subject to expected marginal constraints on the training examples

- Max-margin Markov network
 - Multi-variate, rather than uni-variate output \(Y \)
 - Variable in the outputs are not independent of each other (structured input/output)
 - Margin constraint over every possible configuration of \(Y \) (exponentially many!)
Rationale: Combination of methods

- There is no algorithm that is always the most accurate
- We can select simple “weak” classification or regression methods and combine them into a single “strong” method
- Different learners use different
 - Algorithms
 - Parameters
 - Representations (Modalities)
 - Training sets
 - Subproblems
- The problem: how to combine them
Some early algorithms

- Boosting by filtering (Schapire 1990)
 - Run weak learner on differently filtered example sets
 - Combine weak hypotheses
 - Requires knowledge on the performance of weak learner
- Boosting by majority (Freund 1995)
 - Run weak learner on weighted example set
 - Combine weak hypotheses linearly
 - Requires knowledge on the performance of weak learner
- Bagging (Breiman 1996)
 - Run weak learner on bootstrap replicates of the training set
 - Average weak hypotheses
 - Reduces variance

Combination of classifiers

- Suppose we have a family of component classifiers (generating ±1 labels) such as decision stumps:

\[h(x; \theta) = \text{sign}(w^T x_k + b) \]

where \(\theta = \{k,w,b\} \)

- Each decision stump pays attention to only a single component of the input vector
Combination of classifiers con’d

- We’d like to combine the simple classifiers additively so that the final classifier is the sign of

\[\hat{h}(x) = \alpha_1 h(x; \theta_1) + \ldots + \alpha_m h(x; \theta_m) \]

where the “votes” \(\{\alpha_i\} \) emphasize component classifiers that make more reliable predictions than others.

- Important issues:
 - what is the criterion that we are optimizing? (measure of loss)
 - we would like to estimate each new component classifier in the same manner (modularity)

AdaBoost

- **Input:**
 - \(N \) examples \(S_N = \{(x_1, y_1), \ldots, (x_N, y_N)\} \)
 - a weak base learner \(h = h(x, \theta) \)

- **Initialize:** equal example weights \(w_i = 1/N \) for all \(i = 1..N \)

- **Iterate for \(t = 1..T \):**
 1. train base learner according to weighted example set \((w_i, x) \) and obtain hypothesis \(h_t = h(x, \theta) \)
 2. compute hypothesis error \(\epsilon_t \)
 3. compute hypothesis weight \(\alpha_t \)
 4. update example weights for next iteration \(w_{i+1} \)

- **Output:** final hypothesis as a linear combination of \(h_t \)
AdaBoost

- At the kth iteration we find (any) classifier $h(x; \theta_k^*)$ for which the weighted classification error:

$$\epsilon_k = \frac{1}{n} \sum_{i=1}^{n} W_i^{k-1} I(y_i \neq h(x_i; \theta_k^*) / \sum_{i=1}^{n} W_i^{k-1}$$

is better than change.
- This is meant to be "easy" --- weak classifier
- Determine how many “votes” to assign to the new component classifier:

$$\alpha_k = 0.5 \log((1 - \epsilon_k) / \epsilon_k)$$
- stronger classifier gets more votes
- Update the weights on the training examples:

$$W_i^k = W_i^{k-1} \exp\{-y_i \alpha_k h(x_i; \theta_k)\}$$

AdaBoost: dataflow diagram

$$f_T(x) = \sum_{i=1}^{T} \frac{\alpha_i}{\sum_{i=1}^{T} \alpha_i} h_i(x)$$
What is the criterion that we are optimizing? (measure of loss)
Measurement of error

- Loss function:
 \[\lambda(y, h(x)) \quad \text{(e.g. } I(y \neq h(x)) \text{)} \]

- Generalization error:
 \[L(h) = E[\lambda(y, h(x))] \]

- Objective: find \(h \) with minimum generalization error

- Main boosting idea: minimize the empirical error:
 \[\hat{L}(h) = \frac{1}{N} \sum_{i=1}^{N} \lambda(y_i, h(x_i)) \]

Exponential Loss

- Empirical loss:
 \[\hat{L}(h) = \frac{1}{N} \sum_{i=1}^{N} \lambda(y_i, \hat{h}_m(x_i)) \]

- Another possible measure of empirical loss is
 \[\hat{L}(h) = \sum_{i=1}^{N} \exp\left(-y_i \hat{h}_m(x_i)\right) \]
Exponential Loss

- One possible measure of empirical loss is

\[
\hat{L}(h) = \sum_{i=1}^{n} \exp\left\{ -y_i h_m(x_i) \right\}
\]

Recall that:
\[
\hat{h}_m(x) = \alpha_1 h(x; \theta_1) + \ldots + \alpha_m h(x; \theta_m)
\]

\[
= \sum_{i=1}^{n} \exp\left\{ -y_i \hat{h}_{m-1}(x_i) - y_i a_m h(x; \theta_m) \right\}
\]

\[
= \sum_{i=1}^{n} \exp\left\{ -y_i \hat{h}_{m-1}(x_i) \right\} \exp\left\{ -y_i a_m h(x; \theta_m) \right\}
\]

\[
= \sum_{i=1}^{n} W_{m-1} \exp\left\{ -y_i a_m h(x; \theta_m) \right\}
\]

- The combined classifier based on \(m - 1 \) iterations defines a weighted loss criterion for the next simple classifier to add.
- Each training sample is weighted by its "classifiability" (or difficulty) seen by the classifier we have built so far.
Linearization of loss function

- We can simplify a bit the estimation criterion for the new component classifiers (assuming α is small)

$$\exp\{-y, a_{m}h(x; \theta_{m})\} \approx 1 - y, a_{m}h(x; \theta_{m})$$

- Now our empirical loss criterion reduces to

$$\sum_{i=1}^{n} \exp\{-y_{i}, \hat{h}_{m}(x_{i})\}$$

$$\approx \sum_{i=1}^{n} W_{m-1}^{-1}(1 - y_{i}, a_{m}h(x; \theta_{m}))$$

$$\approx \sum_{i=1}^{n} W_{m-1}^{-1} - a_{m} \sum_{i=1}^{n} W_{m-1}^{-1} y_{i} h(x; \theta_{m})$$

- We could choose a new component classifier to optimize this weighted agreement

A possible algorithm

- At stage m we find θ^{*} that maximize (or at least give a sufficiently high) weighted agreement:

$$\sum_{i=1}^{n} W_{m-1}^{-1} y_{i} h(x; \theta_{m}^{*})$$

 - each sample is weighted by its "difficulty" under the previously combined $m - 1$ classifiers,
 - more "difficult" samples received heavier attention as they dominates the total loss

- Then we go back and find the "votes" α_{m}^{*} associated with the new classifier by minimizing the (exponential) loss

$$\hat{L}(h) = \sum_{i=1}^{n} W_{m-1}^{-1} \exp\{-y_{i}, a_{m}h(x; \theta_{m})\}$$

$$= \sum_{i_{1} \in F} W_{m-1}^{-1} \exp\{-\omega_{i_{1}}\} + \sum_{i_{2} \in T} W_{m-1}^{-1} \exp\{-\omega_{i_{2}}\}$$
The AdaBoost algorithm

- At the kth iteration we find (any) classifier $h(x; \theta_k^*)$ for which the weighted classification error:

$$
\varepsilon_k = \frac{\sum_{i=1}^{n} W_i^k I(y_i \neq h(x_i; \theta_k^*))}{\sum_{i=1}^{n} W_i^k}
$$

is better than change.
- This is meant to be "easy" --- weak classifier
- Determine how many "votes" to assign to the new component classifier:

$$
\alpha_k = 0.5 \log((1 - \varepsilon_k) / \varepsilon_k)
$$

- stronger classifier gets more votes
- Update the weights on the training examples:

$$
W_i^k = W_i^{k-1} \exp\{-y_i h(x_i; \theta_k^*)\}
$$
The AdaBoost algorithm cont’d

- The final classifier after m boosting iterations is given by the sign of

$$h(x) = \frac{\alpha_1 h(x; \theta_1) + \ldots + \alpha_m h(x; \theta_m)}{\alpha_1 + \ldots + \alpha_m}$$

- The votes here are normalized for convenience

Boosting

- We have basically derived a Boosting algorithm that sequentially adds new component classifiers, each trained on reweighted training examples
 - Each component classifier is presented with a slightly different problem

- AdaBoost preliminaries:
 - We work with normalized weights W_i on the training examples, initially uniform ($W_i = 1/n$)
 - The weight reflects the "degree of difficulty" of each datum on the latest classifier
AdaBoost: summary

- **Input:**
 - N examples $S_N = \{(x_1, y_1), \ldots, (x_N, y_N)\}$
 - a weak base learner $h = h(x, \theta)$
- **Initialize:** equal example weights $w_i = 1/N$ for all $i = 1..N$
- **Iterate for $t = 1...T$:**
 1. train base learner according to weighted example set (w_i, x_i) and obtain hypothesis $h_t = h(x, \theta_t)$
 2. compute hypothesis error ϵ_t
 3. compute hypothesis weight α_t
 4. update example weights for next iteration w_{t+1}
- **Output:** final hypothesis as a linear combination of h_t

Base Learners

- **Weak learners used in practice:**
 - Decision stumps (axis parallel splits)
 - Decision trees (e.g. C4.5 by Quinlan 1996)
 - Multi-layer neural networks
 - Radial basis function networks

- **Can base learners operate on weighted examples?**
 - In many cases they can be modified to accept weights along with the examples
 - In general, we can sample the examples (with replacement) according to the distribution defined by the weights
Boosting performance

- The error rate of component classifier (the decision stumps) does not improve much (if at all) over time.
- But both training and testing error improve over time!
- Even after the training error of the combined classifier goes to zero, boosting iterations can still improve the generalization error!!

Why it is working?

- You will need some learning theory (to be covered in the next two lectures) to understand this fully, but for now let's just go over some high level ideas.
- Generalization Error:

 With high probability, Generalization error is less than:

 \[
 \hat{\Pr}[H(x) \neq y] + \tilde{O}\left(\sqrt{\frac{td}{m}}\right)
 \]

 As \(T\) goes up, our bound becomes worse, Boosting should overfit!
Experiments

The Boosting Approach to Machine Learning, by Robert E. Schapire

Training Margins

- When a vote is taken, the more predictors agreeing, the more confident you are in your prediction.

- Margin for example:

\[
\text{margin}_i(x_i, y_i) = y_i \left[\frac{\sum \alpha_i h(x_i; \theta_i) + \ldots + \alpha_m h(x_i; \theta_m)}{\alpha_1 + \ldots + \alpha_m} \right]
\]

The margin lies in \([-1, 1]\) and is negative for all misclassified examples.

- Successive boosting iterations improve the majority vote or margin for the training examples.
More Experiments

The Boosting Approach to Machine Learning, by Robert E. Schapire

A Margin Bound

- For any γ, the generalization error is less than:

$$\Pr(margin_k(x,y) \leq \gamma) + O\left(\frac{d}{\sqrt{m\gamma^2}}\right)$$

- It does not depend on T!!!
Summary

- Boosting takes a weak learner and converts it to a strong one.
- Works by asymptotically minimizing the empirical error.
- Effectively maximizes the margin of the combined hypothesis.