Outline

- Overfitting
 - kNN
 - Regression

- Bias-variance decomposition

- The battle against overfitting:
 each learning algorithm has some "free knobs" that one can "tune" (i.e., heck) to make the algorithm generalizes better to test data.
 But is there a more principled way?
 - Cross validation
 - Regularization
 - Feature selection
 - Model selection --- Occam's razor
 - Model averaging
Overfitting: kNN

Another example:
- Regression

\[y = f(x) \]
Overfitting, con'd

- The models:

- Test errors:

What is a good model?

- Low Robustness
- Low quality / High Robustness
- Robust Model

LEGEND

- Model built
- Known Data
- New Data

© Eric Xing @ CMU, 2006-2008
Bias-variance decomposition

- Now let's look more closely into two sources of errors in an functional approximator:

![Graph showing Bias-variance decomposition]

- In the following we show the Bias-variance decomposition using LR as an example.

Loss functions for regression

- Let t be the true (target) output and $y(x)$ be our estimate. The expected squared loss is

$$E(L) = \int L(t, y(x)) p(x, t) dx dt = \int (t - y(x))^2 p(x, t) dx dt$$

- Our goal is to choose $y(x)$ that minimize $E(L)$:
 - Calculus of variations:

$$\frac{\partial E(L)}{\partial y(x)} = 2 \int (t - y(x)) p(x, t) dt = 0$$

$$\int y(x) p(x, t) dt = \int t p(x, t) dt$$

$$y^*(x) = \frac{\int t p(x, t) dt}{\int p(x, t) dt} = \int p(t | x) dt = E_{p_t}[t] = E[t | x]$$

- The red line represents the best fit for $y(x)$ given the data.
Expected loss

Let \(h(x) = \mathbb{E}[t|x] \) be the optimal predictor, and \(y(x) \) our actual predictor, which will incur the following expected loss

\[
E(y(x) - t)^2 = \int \left((y(x) - h(x))^2 + (h(x) - t)^2 \right) p(x,t) dx dt
\]

\[
= \int \left((y(x) - h(x))^2 + 2(y(x) - h(x))(h(x) - t) + (h(x) - t)^2 \right) p(x,t) dx dt
\]

\[
= \int (y(x) - h(x))^2 p(x) dx + \int (h(x) - t)^2 p(x,t) dx dt
\]

Thus it is a lower bound of the expected loss.

\[
\int (h(x) - t)^2 p(x,t) dx dt \quad \text{is a noisy term, and we can do no better than this.}
\]

The other part of the error comes from \(\int (y(x) - h(x))^2 p(x) dx \), and let's take a close look of it.

We will assume \(y(x) = y(x|w) \) is a parametric model and the parameters \(w \) are fit to a training set \(D \) (thus we write \(y(x;D) \)).

Bias-variance decomposition

For one data set \(D \) and one test point \(x \)

since the predictor \(y \) depend on the data training data \(D \), write \(E_D[y(x,D)] \) for the expected predictor over the ensemble of datasets, then (using the same trick) we have:

\[
\int (y(x;D) - h(x))^2 = \int (y(x;D) - E_D[y(x;D)])^2 + E_D[y(x;D)] - h(x))^2
\]

\[
= (y(x;D) - E_D[y(x;D)])^2 + (E_D[y(x;D)] - h(x))^2 + 2(E_D[y(x;D)] - h(x))(E_D[y(x;D)] - h(x))
\]

Surely this error term depends on the training data, so we take an expectation over them:

\[
E_D[(y(x;D) - h(x))^2] = (E_D[y(x;D)] - h(x))^2 + E_D[(y(x;D) - E_D[y(x;D)])^2]
\]

Putting things together:

expected loss = (bias)^2 + variance + noise
Recall Structural Risk Minimization

- Which hypothesis space should we choose?
- Bias / variance tradeoff

SRM: choose H to minimize bound on true error!

$$\epsilon(h) \leq \bar{\epsilon}(h) + O\left(\sqrt{\frac{d}{m} \log \frac{m}{d} - \frac{1}{m} \log \delta}\right)$$

unfortunately a somewhat loose bound...

SRM strategy (3)

SRM: find i such that expected risk $\bar{\epsilon}(h)$ becomes minimum, for a specific $d^*=d_i$, relating to a specific family H_i of our sequence; build model using h from H_i.
Putting SRM into action: linear models case (1)

- There are many SRM-based strategies to build models:
- In the case of linear models

\[y = \langle w | x \rangle + b, \]

one wants to make \(||w|| \) a controlled parameter: let us call \(H_C \) the linear model function family satisfying the constraint:

\[||w|| < C \]

Vapnik Major theorem:
When \(C \) decreases, \(d(H_C) \) decreases
\[||x|| < R \]

Regularized Regression

\[y_j = \beta^T x_j + \epsilon_j + \epsilon \quad \beta \sim \mathbb{R}^n \]

\[\beta = \arg \min \sum_i (y_i - \beta^T x_i) + \lambda \nabla \mathcal{L}(\beta) \]

Lasso:
\[\mathcal{L}(\beta) = ||\beta||_1 = \sum_i |\beta_i| \]

Ridge:
\[\mathcal{L}(\beta) = ||\beta||_2^2 = \sum_i (\beta_i)^2 \]
Bias-variance tradeoff

- λ is a "regularization" term in LR, the smaller the λ, is more complex the model (why?)
 - Simple (highly regularized) models have low variance but high bias.
 - Complex models have low bias but high variance.
- You are inspecting an empirical average over 100 training set.
- The actual E_{D} cannot be computed.

Bias2+variance vs regularizer

- Bias²+variance predicts (shape of) test error quite well.
- However, bias and variance cannot be computed since it relies on knowing the true distribution of x and t (and hence $h(x) = E[t|x]$).
The battle against overfitting

Model Selection

- Suppose we are trying select among several different models for a learning problem.
- Examples:
 1. polynomial regression
 \[h(x; \theta) = g(\theta_0 + \theta_1 x + \theta_2 x^2 + \ldots + \theta_k x^k) \]
 - Model selection: we wish to automatically and objectively decide if \(k \) should be, say, 0, 1, \ldots, or 10.
 2. locally weighted regression,
 - Model selection: we want to automatically choose the bandwidth parameter \(\tau \).
 3. Mixture models and hidden Markov model,
 - Model selection: we want to decide the number of hidden states
- The Problem:
 - Given model family \(\mathcal{F} = \{M_1, M_2, \ldots, M_I\} \), find \(M_i \in \mathcal{F} \) s.t.
 \[M_i = \arg \max_{M \in \mathcal{F}} J(D, M) \]
1. Cross Validation

- We are given training data D and test data D_{test}, and we would like to fit this data with a model $p_i(x; \theta)$ from the family \mathcal{F} (e.g., an LR), which is indexed by i and parameterized by θ.

- K-fold cross-validation (CV)
 - Set aside αN samples of D (where $N = |D|$). This is known as the held-out data and will be used to evaluate different values of i.
 - For each candidate model i, fit the optimal hypothesis $p_i(x; \theta^*)$ to the remaining $(1-\alpha)N$ samples in D (i.e., hold i fixed and find the best θ).
 - Evaluate each model $p_i(x; \theta^*)$ on the held-out data using some pre-specified risk function.
 - Repeat the above K times, choosing a different held-out data set each time, and the scores are averaged for each model $p_i(.)$ over all held-out data set. This gives an estimate of the risk curve of models over different i.
 - For the model with the lowest risk, say $p_i(.)$, we use all of D to find the parameter values for $p_i(x; \theta^*)$.

Example:

- When $\alpha=1/N$, the algorithm is known as Leave-One-Out-Cross-Validation (LOOCV).

\[\text{MSELOOCV}(M_2) = 0.962 \]
\[\text{MSELOOCV}(M_1) = 2.12 \]
Practical issues for CV

- How to decide the values for K and α
 - Commonly used $K = 10$ and $\alpha = 0.1$.
 - When data sets are small relative to the number of models that are being evaluated, we need to decrease α and increase K.
 - K needs to be large for the variance to be small enough, but this makes it time-consuming.

- Bias-variance trade-off
 - Small α usually lead to low bias. In principle, LOOCV provides an almost unbiased estimate of the generalization ability of a classifier, especially when the number of the available training samples is severely limited; but it can also have high variance.
 - Large α can reduce variance, but will lead to under-use of data, and causing high-bias.

One important point is that the test data D_{test} is never used in CV, because doing so would result in overly (indeed dishonest) optimistic accuracy rates during the testing phase.

2. Regularization

- Maximum-likelihood estimates are not always the best (James and Stein showed a counter example in the early 60’s).
- Alternative: we "regularize" the likelihood objective (also known as penalized likelihood, shrinkage, smoothing, etc.), by adding to it a penalty term:

\[
\hat{\theta}_{\text{shrinkage}} = \arg \max_{\theta} [l(\theta; D) + \lambda \|\theta\|]
\]

where $\lambda > 0$ and $\|\theta\|$ might be the L_1 or L_2 norm.

- The choice of norm has an effect
 - Using the L_2 norm pulls directly towards the origin.
 - While using the L_1 norm pulls towards the coordinate axes, i.e it tries to set some of the coordinates to 0.
 - This second approach can be useful in a feature-selection setting.
Recall Bayesian and Frequentist

- **Frequentist interpretation of probability**
 - Probabilities are objective properties of the real world, and refer to limiting relative frequencies (e.g., number of times I have observed heads). Hence one cannot write $P(\text{Katrina could have been prevented}|D)$, since the event will never repeat.
 - Parameters of models are fixed, unknown constants. Hence one cannot write $P(\theta|D)$ since θ does not have a probability distribution. Instead one can only write $P(D|\theta)$.
 - One computes point estimates of parameters using various estimators, $\theta \sim f(D)$, which are designed to have various desirable qualities when averaged over future data D (assumed to be drawn from the “true” distribution).

- **Bayesian interpretation of probability**
 - Probability describes degrees of belief, not limiting frequencies.
 - Parameters of models are hidden variables, so one can compute $P(\theta|D)$ or $P(f(\theta)|D)$ for some function f.
 - One estimates parameters by computing $P(\theta|D)$ using Bayes rule:
 \[
 p(\theta|D) = \frac{p(D|\theta)p(\theta)}{p(D)}
 \]

Bayesian interpretation of regulation

- **Regularized Linear Regression**
 - Recall that using squared error as the cost function results in the LMS estimate.
 - And assume iid data and Gaussian noise, LMS is equivalent to MLE of θ.
 \[
 l(\theta) = n \log \frac{1}{\sqrt{2\pi\sigma^2}} - \frac{1}{\sigma^2} \sum_{i=1}^{n} (y_i - \theta^T x_i)^2
 \]
 - Now assume that vector θ follows a normal prior with 0-mean and a diagonal covariance matrix
 \[
 \theta \sim \mathcal{N}(0, \tau^2 I)
 \]
 - What is the posterior distribution of θ?
 \[
 p(\theta|D) \propto p(D|\theta) = \left(2\pi\sigma^2\right)^{-n/2} \exp \left\{-\frac{1}{2\sigma^2} \sum_{i=1}^{n} (y_i - \theta^T x_i)^2\right\} \times C \exp \left\{-\frac{\theta^T \theta}{2\tau^2}\right\}
 \]
Bayesian interpretation of regulation, con'd

- The posterior distribution of θ

$$p(\theta|D) \propto \exp\left\{-\frac{1}{2\sigma^2} \sum_{i=1}^n (y_i - \theta^T x_i)^2 \right\} \times \exp\left\{-\theta^T \theta / 2\sigma^2 \right\}$$

- This leads to a now objective

$$I_{MAP}(\theta; D) = -\frac{1}{2\sigma^2} \frac{1}{2} \sum_{i=1}^n (y_i - \theta^T x_i)^2 - \frac{1}{2} \frac{1}{2} \sum_{i=1}^K \theta_i^2$$

$$= l(\theta; D) + \lambda \|\theta\|$$

- This is L_2 regularized LR! --- a MAP estimation of θ
- What about L_1 regularized LR! (homework)
- How to choose λ.
- cross-validation!

3. Feature Selection

- Imagine that you have a supervised learning problem where the number of features d is very large (perhaps $d >> \#\text{samples}$), but you suspect that there is only a small number of features that are "relevant" to the learning task.

- VC-theory can tell you that this scenario is likely to lead to high generalization error – the learned model will potentially overfit unless the training set is fairly large.

- So lets get rid of useless parameters!
How to score features

- How do you know which features can be pruned?
 - Given labeled data, we can compute some simple score $S(i)$ that measures how informative each feature x_i is about the class labels y.

- Ranking criteria:
 - Mutual Information: score each feature by its mutual information with respect to the class labels
 \[
 MI(x_i, y) = \sum_{x_i \in \{0,1\}} \sum_{y \in \{0,1\}} p(x_i, y) \log \frac{p(x_i, y)}{p(x_i)p(y)}
 \]
 - Bayes error:
 - Redundancy (Markov-blank score) …
 - We need estimate the relevant $p(\cdot)$'s from data, e.g., using MLE

Feature Ranking

- Bayes error of each gene
- Information gain for each genes with respect to the given partition
- KL of each removal gene w.r.t. to its MB
Feature selection schemes

- Given n features, there are 2^n possible feature subsets (why?)
- Thus feature selection can be posed as a model selection problem over 2^n possible models.
- For large values of n, it's usually too expensive to explicitly enumerate over and compare all 2^n models. Some heuristic search procedure is used to find a good feature subset.
- Three general approaches:
 - Filter: i.e., direct feature ranking, but taking no consideration of the subsequent learning algorithm
 - add (from empty set) or remove (from the full set) features one by one based on $S(i)$
 - Cheap, but is subject to local optimality and may be unrobust under different classifiers
 - Wrapper: determine the (inclusion or removal of) features based on performance under the learning algorithms to be used. See next slide
 - Simultaneous learning and feature selection.
 - E.x. L₁ regularized LR, Bayesian feature selection (will not cover in this class), etc.

Wrapper

- Forward:
 1. Initialize $\mathcal{F} = \emptyset$
 2. Repeat
 - For $i = 1, \ldots, n$
 - if $i \notin \mathcal{F}$, let $\mathcal{F}' = \mathcal{F} \cup \{i\}$, and use some version of cross validation to evaluate features \mathcal{F}' (i.e., train your learning algorithm using only the features in \mathcal{F}', and estimate its generalization error.)
 - Set \mathcal{F} to be the best feature subset found on the last step.
 3. Select and output the best feature subset that was evaluated during the entire search procedure.

- Backward search
 1. Initialize \mathcal{F} = full set
 2. …
Case study [Xing et al, 2001]

- The case:
 - 7130 genes from a microarray dataset
 - 72 samples
 - 47 type I Leukemias (called ALL)
 - 25 type II Leukemias (called AML)

- Three classifier:
 - kNN
 - Gaussian classifier
 - Logistic regression

Regularization vs. Feature Selection

- Explicit feature selection often outperform regularization
4. Information criterion

- Suppose we are trying to select among several different models for a learning problem.

- The Problem:
 - Given model family $\mathcal{F} = \{M_1, M_2, \ldots, M_J\}$, find $M_i \in \mathcal{F}$ s.t.
 $$M_i = \arg\max_{M \in \mathcal{F}} J(D, M)$$
 - We can design J that not only reflect the predictive loss, but also the amount of information M_k can hold

Model Selection via Information Criteria

- Let $f(x)$ denote the truth, the underlying distribution of the data
- Let $g(x, \theta)$ denote the model family we are evaluating
 - $f(x)$ does not necessarily reside in the model family
 - $\theta_{ML}(y)$ denote the MLE of model parameter from data y
- Among early attempts to move beyond Fisher’s Maximum Likelihood framework, Akaike proposed the following information criterion:
 $$E_y[D(f \parallel g(x \mid \theta_{ML}(y)))]$$
 which is, of course, intractable (because $f(x)$ is unknown)
Measuring model difference

- How can we compare the closeness of a learned hypothesis and the true model?
- The relative entropy (also known as the **Kullback-Leibler divergence**) is a measure of how different two probability distributions (over the same event space) are.
 - For 2 pdfs, \(p(x) \) and \(q(x) \), their **KL-divergence** is:
 \[
 D(p \parallel q) = \sum_{x \in X} p(x) \log \frac{p(x)}{q(x)}
 \]
 - The KL divergence between \(p \) and \(q \) can also be seen as the average number of bits that are wasted by encoding events from a distribution \(p \) with a code based on a not-quite-right distribution \(q \).

AIC and TIC

- **AIC** (An information criterion, not Akaike information criterion)
 \[
 A = \log g(x \mid \hat{\theta}(y)) - k
 \]
 where \(k \) is the number of parameters in the model
- **TIC** (Takeuchi information criterion)
 \[
 A = \log g(x \mid \hat{\theta}(y)) + \text{tr}(I(\hat{\theta}_0)\Sigma)
 \]
 where
 \[
 \hat{\theta}_0 = \arg \min D(f \parallel g(\cdot \mid \hat{\theta}))
 \]
 \[
 I(\hat{\theta}_0) = -E_x \left[\frac{\partial^2 \log g(x \mid \hat{\theta})}{\partial \hat{\theta} \partial \hat{\theta}^T} \right]_{\hat{\theta} = \hat{\theta}_0}
 \]
 \[
 \Sigma = E_y \left[(\hat{\theta}(y) - \hat{\theta}_0)(\hat{\theta}(y) - \hat{\theta}_0)^T \right]
 \]
 - We can approximate these terms in various ways (e.g., using the bootstrap)
 - \(\text{tr}(I(\hat{\theta}_0)\Sigma) \approx k \)
5. Bayesian Model Averaging

- Recall the Bayesian Theory: (e.g., for data D and model M)

$$P(M|D) = \frac{P(D|M)P(M)}{P(D)}$$

- the posterior equals to the likelihood times the prior, up to a constant.

- Assume that $P(M)$ is uniform and notice that $P(D)$ is constant, we have the following criteria:

$$P(D|M) = \int \theta P(D|\theta, M)P(\theta|M)d\theta$$

- A few steps of approximations (you will see this in advanced ML class in later semesters) give you this:

$$P(D|M) \approx \log P(D|\hat{M}) - \frac{k}{2} \log N$$

where N is the number of data points in D.

Summary

- Bias-variance decomposition
- The battle against overfitting:
 - Cross validation
 - Regularization
 - Feature selection
 - Model selection --- Occam’s razor
 - Model averaging
 - The Bayesian-frequentist debate
 - Bayesian learning (weight models by their posterior probabilities)