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1. Introduction 

In [2] it was shown that for sufficiently complex Algol-like languages there cannot be a Hoare axiom 

system which is sound and relatively complete in the sense of Cook [4]. The incompleteness exists whenever a 

programming language contains (or can simulate) the following combination of features: (i) procedures with 

procedures passed as parameters, (ii) recursion, (iii) use of non-local variables, (iv) static scoping, and (v) local 

procedure declarations. Moreover, if any one of the features (i), (ii), (iv). or (v) is dropped from Algol, a sound and 

relatively complete axiomatization can be obtaincd for the restdting languages (called L2, 1.3, L5, and L6 in [2]). It has 

long been conjectured that the same is true for the language IA which results when feature (iii), use of non-local 

variables, is dropped. 

The languages I2,  L3, L5, and L6 are relatively easy to axiomatize, since they all have the finite range 

property. Informally, this property is that for each program, there is a bound on the number of distinct larocedure 

environments, or associations between procedure names and bodies, that can be reached. However, IA does not have 

the finite range property. Intuition suggests that some new reasoning methods are needed for such programs. This 

intuition is supported by [9], where a precise characterization is given for the class of Hoare axiom systems based on 

copy rules, and it is shown that none of these axiom systems can deal adequately with in finite range. 

The main new results in this paper are an axiom system for reasoning about programs with infinite range 

and a new technique for constructing relative completeness proofs for languages with procedure parameters. We also 

present a new way of formalizing the semantics of programs with free procedure names. Many of the techniques 

introduced in this paper are of general use beyond tile immediate problem of the language L4. In the course of the 

relative completeness proof, we develop results of independent interest concerning the existence in general 

programming languages of interpreter programs; i.e., fixed programs capable of simulating any program in the 

language. 
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For a brief preview of our approach to reasoning about programs with infinite range, let us consider a 

small example of a formula in our logic. We retain the idea of using partial correctness 

assertions {U}S{V}, where U and V are first order, for specifying and reasoning about statements. To 

specify a procedure p with a procedure parameter r, 

correctness assertions, to describe how the semantics of 

the procedure 

proe p(x:r); begin r(x); r(x) end 

we construct more complicated formulas containing partial 

r affects the semantics of p(r). For instance, let p be 

which calls the formal procedure r twice on the variable parameter x. For an arithmetic domain, p ~tisfies the 

formula 

Vr, v({y = y0} r(y){y = Y0" v} -.~ {x = x0} p(x:r) {x = x 0. v2}) 

Intuitively, this formula says that for all procedures r and domain values v, if the 

call r(y) multiplies y by v, then for the same procedure r and value v, the 

call p(x:0 multiplies x by v 2. 

At this point, one might wonder whether this approach is sufficient to specify all procedures. Indeed, the 

essence of the relative completoncss proof for our axiom system is that  in L4, the necessary facts about procedures can 

always be expressed by an ~ppropriate formula of our logic. 

A different approach to axiomatizing procedures as parameters, based on the use of higher order logic in 

the assertion language, has been develope d in [10, 5], In both of these papers, the axiom system is assumed to include 

as axioms all of the formulae valid in a certain higher order theory related to the interpretation. In contrast, our axiom 

system includes as axioms only the first order theory of the interpretation. Also, in [10, 5], the notion of expressiveness 

used in establishing relative completeness takes a more general form, involving higher order formulas, while we use 

the familiar notion of expressiveness as in [4]. It has been conjectured that the two notions of expressiveness are 

equivalent; this problem is under study [6], 

2. Programming Language 
A statement has one of the forms: 

<statement> : :=  x := e [ S1;S 2 t if b then S 1 else S 2 [ S 1 or S 2 

] begin var x; S end I begin E; S end I p(X':D 

The statement S 1 or S 2 makes a nondeterministic choice and executes one of  the statements. 

In begin E; S end, E is a procedure environment; i.e., a set of  procedure declarations. We sometimes 

abbreviate this as E [ S. In p(~':r), ~" is a list of variable identifiers and tr is a list of procedure identifiers. We 

often abbreviate begin E; S end to E [ S. 



A set ' J  procedu re declarations has the form 

proe pt(~(rl); ~l 
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proc pro(fire:Fro); B m 

and introduccs possibly mutually reeursivc dcclarations of Pl "" ~ Pro' The Pi arc callcd declared procedure names; 

the r i are forma/ procedure names. B i is the body of procedure Pi" 

An occurrence of an identifier in a statement may be eitherjTee or bound in the usual sense. Note ',hat we 

allow free procedure identifiers to appear in statements. A program A is a statement with no free procedures. 

A declaration proc p(~':r-); B is said to have no global variables if all the free variables o r b  are in ~. An 

environment (statement. program) has no global variables if all its declarations have no free variables. Note that such 

an environment (statement, program) may have free procedures. 

We arc primarily concerned with programs which have no global variables. For historical reasons [2] this 

language is often called L4. In [A, the only variablcs that can be accessed or changed by a procedure call are the 

actual variable parameters in the call. This property will help us to get a sound and relatively complete axiom system 

for L4. 

3. Semantics of statements 

Let ~ be a given first order interpretation. A program state is a mapping from the set of program 

variables to dora(I). The meaning of a statement is a binary relation on states. Given procedure environment E, we 

associate with each statement A its meaning in I and E via the function ,.~Ol, E. We define ..h~l, E first for 

statements without procedure calls or procedure declarations by induction on structure of the statement: 

~bi,E(error ) = 

JCbI, E(X: =e)  = {(s,s[l(e)/x]) i s is a state} 

.A~%E(A1;A 2) = {(s,s') T 3 t((s,t) ~ A't,I,E(A 1) and(t,s ') ~ A~,I,E(A2))} 

• /~I.E(A1 orA 2) = ,AhI, E(A1)~U .A~I,E(A 2) 

,Abt,E(ifbthen Alelse A2) = {(s,s') c .Aa, i,E(A1) I I,s ~ b} I,) {(s,s') ¢ JII~I,E(A2) [ I,s I== --, b} 

athl,E(begin var x; A end) = {(s,s')[ ":1 (u,u') ¢ aIt~I,E(A), u = s[l~/x)], s'=u'[s(x)/x]} 

(where a is a fixed constant) 

We give meaning to statements with procedure declarations and procedure calls by first converting them 

to statements without procedure declarations and calls, by using an auxiliary function Approx ~. Informally, Approx~ 



givcs the k th approximation to the 

environment E. We dcfine Appmx~ 

1. Approx ~: (error)  = error 

2. Approx kE 

3. Approx ~: 

4. Approx ~ 

5. Approx ~ 
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fixed-point meaning of a rccursively dcfincd procedure 

by induction on k and thc structure of statements: 

in procedure 

( x ; = e )  = x : = e  

(A1;A 2) = Approx~(hl);Approx~;(A2) 

(A 1 or A2) = Approx~:(At) or Approxlk.:(A2 ) 

(if b then A t else A2) = if b then Approx ~: (AI) else Approx ~(A2) 

6. Approx': (begin var x; A end) = begin var x; ApproxlR~(A) end 

renaming the bound variable x if it appears freein E (see below). 

7. Approx[: (E' I A) = Approxkl U E" (A) 

renaming bound variables in E' if necessary (see below). 

8. Approx': (p(r.~) = 

error if k=0  and p is declarcd in E 

Approx ~1 ( [~ ' / f ' , q / f f ' ]B) i f  k > 0 and thcdeclaration proep(~":ff'); B ~z E 

Ek t P(X':ff) otherwise, where E k is defined below. 

If E consists of the declarations proe pi(~i:ffi) ; B i, i = l  . . . . .  n, then E K consists of the 

declarations proc pi(~'i:0;Approx~(pi(~i:ri)). Note Approx~:(pi(~'i:ri) ) = Approxkl(Bi) if k > 0, so this 

inductive defnition is indeed well defined. 

In clause 6 if the bound variable x appears frec in E, then we have to rename the x to some fresh 

variable x' m avoid capturing the free variable in E. Thus we would get 

begin vat x'; Approx ~-1 ([x'/xlA) end 

Similarly, in clause 7, ifsome procedure idcntificr declared in E' already appears in E, we have to rename the 

identifiers in E' (and all their bound occurrenccs in A) to avoid naming conflicts. 

Note that if A is a program, then ApproxkE(A) = Approx~ (A) (i.e., Approx ~(A) is independent 

of E), and Approx,(A) does not contain any procedure declarations or procedure calls. 

Given a procedure environment E and statemcnt A, let E A = E U {p(i':D; error 1 P appears 
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free in (E I A)}.  Note EAiA is a program, since it has no free pr(x:edurc identifiers. To complete our 

semantics, we define, for any statement A, 

~ t ,E  (A) = U k Approx ~ (E A [ A) 

Wc ncx~. dcfinc two statcmcnts A t and A 2 to bc equivalent, written A I = A2~ if ~t,l, E (At) = 

AbLE (A2) for all interpretations ! and proccdurc cnvironmcnts E. Similarly, wc write A I _< A 2 if AqOl, E 

(At)~t,l.E(A2) for all interprctations I andproccdurecnvironmcnts E. 

Thc following lemma will bc uscd throughout thc papcr. 

Lemma !: 

(a)lf p(~': ~; B ¢ E, Sen 

E [ p(p': ~ ~ EI [~lT, rls-]B 

(b) E ]ai;A 2 -~ (E [AI);(E [A2) 

(C) E [AIorA 2 ~  E[A t or EJA 2 

(d) E l i f  b then A 1 else A 2 ~ i f  b then E[A t else E [A 2 

(e) If x does not appear frec in A, then 

El beginvar x; A end ~ beginvar x; E[A end 

(f) If ErE 2 do not contain distinct declarations for the same procedure identifier, then 

EI[(E2[A) ~- (E l U E2)IA 

(g) Ifnone ofthe procedures declared in E appear free in A, then 

E t A  ~ A 

(h) If A and A' are identical up to renaming of bound varaibl~, 

A ~ A' 

From Lemma I, we unmediately get the following: 

Corollary: Every statement is equivalent to one in a normal form, where E[ A occurs only if A is a 

procedure call. 
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4. Syntax and Semantics of Formulas 

To define the set of  formulas used in our axiom system, we begin by fixing a first order type Z which 

determines the finite set of  constant, predicate, and function symbols that can appear in programs and first-order 

formulas. We permit three distinct kinds of  variables:ordinary variables (x), environment variables (v), and t~roccdure 

variables (0. The syntactic distinction between ordinary and environment variables is that ordinary variables, like the 

variables in most Hoare axiom systems, may appear in both programs and first-order formulas; environment variables 

are a new class of variables which may appear only in first-order formulas. Procedure variables may appear only in 

programs, subject to these restrictions on the use of variables, a formula has the form 

<formula> ::= U ] {U} S {V} I {H l . . . . .  H n} I(HI---+H2) ] V v H ] V r H  

where U and V are first order, S is any statement, H and H t . . . . .  H a are formulas, v is an environment 

variable and r is a procedure variable. Arbitrary nesting of (H 1 ~ H2), VvH, and VrH, is permitted. 

In order to give meaning to formulas we need an interpretation I, which gives meaning to the symbols 

in Y. in the usual way, an environment valuation a which assigns an element of dora(l) 

variable, and a procedure environment E. 

I, E, o I== 

],F. o ~ 

I, E, o 1== 

t,E, o I= 

I, E, ¢r ~= 

l , E , o  k= 

to each environment 

U iff for all s, I, s k= U (where t, s I== U is defined in the usual way) 

{U} A {V} iff for all s,s': I, s I== U and (s,s') ¢ J&I,E (A) implies I, s' 1 == V. 

{H 1 . . . . .  Hn} iff I, E, a I= Hi, i = 1 . . . . .  n. 

H I ~ H  2 iff I,E, al==Hlimplies I,E,~rI==H 2. 

V v H  iff foralld ~ dom(l): I ,E ,o[d/v]k=H.  

V r  H iff for all procedure declarations proe r'(~,q); B I,E U {proe r'(~,q); B} I== H [r'/r]. 

where r' is a fresh variable which does not appear in E and has the same type as r. 

Finally, we define I ~ H ifffor all E, o: I,E,o ~ H. 

Note that the meaning of  a free environment variable in a formula is the same wherever it appears. In 

contrast, the meaning of a program variable is "local" to each partial correctness assertion in which it appears, since it 

is effectively universally quantified. For example, consider the following two formulas 

(1) {True} y : = y {x = 3} ~ {True} y : = y {False} 

(2) {True} y : = y {v = 3} ~ {True} y : = y {False} 

where x and y are ordinary variables and v is an environment variable. Formula 1 is. valid, because the 

antecedent {True} y : = y {x = 3} is false: it is not the case that for all initial values of x and y, y : = 

y sets x to 3, Formula 2 is not valid (in any interpretations with more than one domain element), because v is 

quantified over the whole formula. For o(v) = 3, the antecedent is true but the consequent is false, giving a 
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counterexampte m (2). 

5. Axiom System 

Consider the following collection of axiom schemes and rnles of in ference. 

Axiom schemes 

AX !. {Trne} error {False} 

AX2, {U [e / xI} x: = e{U} 

AX 3. {{U} A x {V}, {V} A 2{W}} --* {U} AI;A 2 {W} 

AX4.{{U A b}A t{V},{U A-~b}A 2 {V}} --* {U} if b then A 1 else A 2{V} 

AX 5. {{u} A~ {V}, {U} A 2 {V}} --, {U} A 1 or A 2 {V} 

AX 6. {U} A[x' / x] {V} --* {U} begin var x; A end {V}, where x' does not appear in U,V, or A. 

AX 7. {U~ ~ u, {U} h {V}, V ~ Vt} - .  {U 1} h {Vii 

AX 8, {U} A {V} --* { 3 y U} A { 3 yV} if y is an ordinary variable not free in A. 

AX 9. {U} A {V} ~ {U A Q } A { V  AQ} ifno variable free in Q is also free in A. 

AX 10. {U} A {V} ~ {U} A' {V} provided A ~ A' via the rules of Lemma 1. 

AX [ l a ,~vH ~ H[v ' /v]  

AX I i b . ~ r H  --r H[r' / r] where v is an environment variable, and r is a procedure variable. 

AX 12. {U} A {V} --~ {U ~} A ,  {V ,r} where n is an injective mapping on the set of ordinary variables, 

AX!3. H ~ H & C  

provided C is a first order formula whose only free variables are environment variables and H & C is 
defined. We define H & C by induction. For cases 3-6 below, H & C is defined on the left side of 
the equivalence if all of the formulas on the right side are defined. 

1. H & C is not defined if H is a first order formula. 

2, {U}A{V}&C----- {U A C}A{VAC}. 

3. {H 1 . . . . .  H n } & C ~  {H I&C . . . . .  H n&C}. 

4. ( H I ~ H 2 ) & C - -  HI&C--*H2&C.  

5. ( ~ v  H) & C ~ V v '  (H[v'/v] & C) where v' is not free in H, C. 

6. ( ~ r H ) & C ~  ' ~ r ( H & C ) .  
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AX 14. 

AX 15a. 

AX 15b. 

AX 16a. 

AX 16b. 

AX 17. 

AX 18. 

{H I . . . . .  Hn} --* H i 1 _< i _< n 

(H t --* (H 2 -"* H3)) ~ (H l O H 2 ~ H 3) 

((H t U H 9 --* H 3) ~ (H I ~ (H 2 ~ H3)) 

H---, (O~  H) 

{H 1 --4 H 2, H3--* H 4} ~ {H~ U H 3 ~  H 2 U H 4} 

{H 1 ~ H 2, H 2 ~ H 3} --, {H l --+ H3} 

Rules of Inference 

R1. 

R2. 

H l, (H l --~ H2) 

H 2 

H 1 --4 H 2 

E I HI---, E I H 2 

where E I H  is the result ofreplacing every p.c.a. {U}A{V} in H by {U}E I A{V}, 
subject to the usual conditions about renaming bound variables to avoid capture of" free variables 
in E. 

R3. H -,  {O} A {V} 

H--, {3v U} A {3vV} 

1{4. H---, H 1 . . . . .  H---, H n 

H "-' {H 1 . . . . .  Ha} 

RS. H - * H '  

{H~ VvH',H--~ V rH'} 

provided v and r are not f ree in  H. 
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R6. Suppt~e E consists of~the declarations proe pi(~ : ~); Bi, i = t . . . . . .  n, 

and Pl . . . . .  o n do not appear free in H l H 1 . . . . .  H n. 

Roughly speaking R6, the recursion rule, says that whenever we can infer something about a call p;(£i:Fi) from 

some hypotheses H i, we can infer the same thing about the associated body B i (again from the hypothesis Hi) 

then from the hypoth~is H i we can draw the same conclusion about the declared call Et Pi(£/:ri). 

Several of  the rules, such as R3, R4, R5, and R6, involve a formula H which appears in both the 

antecedent and consequent of  the rule. In all of  these rules, the role of H is to allow the rule to be applied relative 

to some chosen set of  assumptions. Rule R4, for instance, could have been stated in a less general form as 

R4' 
Hi, . . . .  H n 

{H l . . . . .  H n} 

which says that if all of the H i are valid formulas, then {H 1 . . . . .  Hn} is valid. However, it is sometimes 

necessary to make more general deductions of  the form: if each of the H i is a valid consequence of H, then so 

is {H 1 . . . . .  Ha}. 

6. Soundness of R3 

in this section we show that the axiom schemes and rules of inference presented in the previous section are 

sound; i.e., if Th(1) F-- H then I I~ H for any interpretation I and formula H (where Th(I) is the set 

of all first-order formulas valid in I). We will concentrate on proving the soundness Of the recursion role R6 here, 

leaving the soundness of the rest of  the system to the full paper. We must show that whenever the antecedent 

o f  R6 is valid, then the conclusion is also valid. So suppose that 

(0)I ~ H ~ ({ ~¢r:~.(H.~ ~ ~ {U.}, p.(~.-r.)L ~', {Vi})'i = 1 . . . . .  n} --* { 'V' ~'~i (HI -~ {Ui}Bi{Vi})'i = 1, . .  . ,  n}) 

We want to show that for all environments F and valuations a that 

(1) I,F,aI==H --+({ V ~,~i(Hi --+{Ui}Pi(~'i:Fi){Vi}),i = 1 . . . . .  n} 

So suppose 

(2) I ,F,~ ~ H  

(otherwise the result is immediate). Thus we must show 
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(3) I,F,a 1=={ V Fi,~i(H i ~ { Ui} Pi (~i:i~i) {Vi}) ' i  = 1 . . . . .  n} 

Wc can supposc without loss ofgcncrality that Pl . . . . .  Pn' do not appcar in F (otherwise wc could just rcnamc 

thcscboundvariablcs).l.ct F m = F U {proepi(~' i :~):Approx~(Elpi  (~-i:~)),i=l . . . . .  n}. We will show by 

induction on m that f or all m 

(4) l,Fm,a )=={V~,~'i(Hi--*{Ui}Pi(ri:~){Vi}),i=t . . . . .  r l}  

By a straightforward argument we can show that no matter how the procedures in ~ are declared in F we have 

./d~l.lz(E I pi(~i,Fi)) = LIm J'd°lJ: m (Pi(X'i :Fi)) 

Thus (4) suffices to prove (3). Proving (4) for m = 0 is trivial, since in F 0  ̀we have proc pi(~i:Fi); error. Assume 

(4) holds for m = N - 1. We now show it holds for m = N. It clearly suffices to show, for all choices 

of F and a that 

(5) LFN,a ~{H~ - ,  {U i} p~(r:ri){Vi}, i= t . . . . .  n} 

Without loss of generality, we can assume 

(6) I,FN,~r !=={H 1 . . . . .  Hn} 

Under this assumption, we must show 

(7) I,VN,a l== Ui{Pi(xi:ri)}Vi 

Using our inductive hypothesis (4) for m = N-l, the validity of(0), assumption (2), and the fact that free (H) ¢3 

{Pl . . . . .  Pn } = O, weget 

(8) I,FN. I, o" l == { V  ~'q'i (Hi -'* {Ui} Bi {Vi})' i = 1 . . . . .  n} 

From (6) and the fact that free (H 1 . . . . .  H n) f3 {Pl . . . . .  Pn } = O, we get 

(9) I,FN.1, a I== {H 1 . . . . .  Ha} 

Using (8) and (9), we can conclude 

(10) I,FN. 1, o I== {Ui} B i {Vi} 

We will now show 

(11) J#~I,FN.1 (Bi) ;~ .AI,I.FN (Pi(xi:ri)) 

(7) follows immediately from (10) and (11), so the proof of (11) will complete the inductive step of our proof. The 
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prcn)fof(l 1) folk)ws from the foltuwing chain of containments: 

~u,' N % (~:ri)) 

= ,Ably N (Approx ~ (E i Pi (xi:Vi))) 

= A'OI.FN.t (Approx ~ (E [ Pi (xi:Fi))) (since ["N-I' FN only differ on procedures declared in E) 

= .}~I, FN.1 (Approx ~-I (E ] Bi)) (by definition of Approx) 

C (Bi) - Jl~ 1,FN_j " 

The !ast containment follows by induction on N ff)llowcd by a subinduction on the structure of B i. 'lqae only 

difficulty occurs if B i is of the fnrm pk(~-XD where Pk is declared in E. Note that 

J~I,FNq. (pk(y':q)) = d~Oi,VN.[([y'/x'k,Ul/r'k] ) (Appmx ~-t (E I Ok (xk:rk))) 

(since in FN. I, we have the declaration proc Pk (x'i:~))' (Approx N-I (E ] Pk (Xk:Fk))) 

Thus we must show 

dl~ol,I,N. 1 (Approx ~-! (E I Pt(g, Ct)))c- "/t~l.V.N4. ([f/gk,Ct/Fk]) (Approx ~-1 (g [ Pt, (fk:~))) 

This last inequality follows from ,,he more general 

(12) ~I,FN.L (Approx N-I (E [ S(q,D))c_ .A~I,F:N. 1 ([~r/fk,i~/f'k]) (Approx N-I (E ] S (R'k:i~))) 

(12) is proved by induction on N and a subinduction on the structure of S. We leave details to the reader, f"l 

7. Relative Completeness 
tn this section, we outline a proof of the relative completeness of the axiom system. The proof uses some 

interesting new ideas to deal with statements having free procedure names. The following discussion, however, is 

intended only to give an informal overview of the completeness proof. A more precise account appears in the final 

version of the paper and in [7]. 

First we need the following definitions. An interpretation I is Herbrand definable if every element 

of dora(I) is represented by a term involving only the constant and function symbols of I. In a fixed 

interpretation I, the strongest posteondition of a program A with respect to a (first order) 

precondition U, $P(A,U), is the set &all final states A can reach when started in a state satisfying U: 

SP(A,U) = {s' t ~ s (l,s I== U A (s,s') ~ "%1 (A))}. 

An interpretation [ is expressive for a programming language L if for every program A ¢ L and 

precondition U, SP(A,U) can be expressed by a first order formula using only the symbols of L 

Our main result ks 
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Relative Completeness: l.et I be Herbrand definable and expressive for IA, and let A ¢ IA. Then 

1 ~ {U} A {V} implies Th(I) I-- {U} A {V}; i.e., if a partial correctness assertion is true in an 

interpretation I, then it can be proved in our system using the first order theory of I as axioms. 

In contrast, the relative completeness results obtained in [10, 5] depend on a more general notion of 

expressiveness with respect to preconditions in a higher order logic and require that a certain higher order theory of 

the interpretation be added as axioms. 

The completeness proof uses the fact that in a language which does not permit non-local use of variables, a 

procedure call p(~-:t3 does not depend on any variables other than the ones in ~ Without this 

restriction, p(~':r) could depend on variables global to the body of p, global to procedures free in the body 

of p, orglobal to any of the proccduresin F. 

One of the central ideas of the proof is that the act of passing a procedure parameter may be regarded as 

passing an input-output relation on a set of variables: in the call p(:r), where r has type r(x-), r is a relation 

on ~'. When r has higher type r(~" : ~), r is still an input-output relation on ~', but one which depends on 

the relations corresponding to its procedure parameters in q. We wish to show that these relations can be 

represented by formulas in our logic. Returning to the example formula mentioned in the introduction, 

~/' r,v ({y = y0} r (y) {y = Y0' v} ~ {x = x0} p (x:r) {x = x 0 • v2}) 

observe how the environment variable v, appearing in the posteonditions of the calls r(y) and p(x:r), is used 

to express thc relationship between the semantics of r(y) and p(x:r). The formula states that 

if r(y) multiplies y by v, then p(x:r) multiplies x by v 2. In order to prove relative completeness, we 

must show that the logic can express all of the necessary relations of this sort. We will return to this problem and 

make it more precise later. 

Another problem related to expressiveness is the question of when we can assume that the strongest 

postcondition of a statement is expressible in the first order assertion language. Roughly speaking, most relative 

completeness proofs proceed by showing the following is provable in the axiom system: 

(2) i-- {U} A {SP(A,U)} 

for any statement A and precondition U. From I-- {U} A {SP(A,U)} and rule of consequence one can 

prove that if I I== {U} A {V}, then Th(1) I-- {U} A {V} for it must be the case that if I= U A 

V, then I ~ SP(A,U) ~ V. This chain of reasoning depends on the assumption of expressiveness, which 

was used implicitly in writing (2). 

However, the usual notion of expressiveness is that SP(A,U) can be expressed for any program A. By 

definition, a program does not have free procedure names; hence expressiveness does not immediately guarantee that 

one can express SP(A,U) for~an arbitrary statement A which may have free procedure names. Thus, our relative 

completeness proof cannot proceed directly by proving a lemma of the same form as (2). Roughly, if A is a 
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statement with free proccdm'cs, wc will be able a) show ~ H -* {V} A [SP{A,U)}, where H is a suitably 

chosen set ofhypothcsis about the free pnx:cdures in A, and A is a program (with no frcc procedures), which in 

somc sense simulates A. We proceed by using some of  the pmpcrties of  the Herbrand definable interpretations. 

is 

2 [8]. If I is an interpretation which is Hcrhrand definable and the programming language 

IA (or more generally, any "acceptable programming languagc with rccursion" in the sense of[3]) then either 

I. I is finite or 

2. there arc programs in 0~c !anguage which simulate arithmetic in dora (1). 

One can use this fact about Hcrbrand definable domains to provc the existence of interpreter programs. 

Roughly speaking, an intcrprcter program receives as inputs a number of  ordinary variables containing an encoding of 

an arbitrary rclation to be computcd, and a number of other variables to which the relation is to be applied. The 

interpreter then modifies the second set of variables according to the relation. Using interpreter programs, we can 

transform any L4 program into a program without proccdurcs passed as parameters by adding additional ordinary 

variables to pass values which encode the procedure.s. Specifically, onc can show that for any 

statement A in L4, there is another statement A* having the following properties. In place of each formal 

procedure name r frcein A,A* has a ncw group of frcc ordinary variables, r*. The r* variables arc distinct 

from all other variables. If A is a statement whose only free procedure names are the formals r 1 . . . . .  r n, then 

the relational semantics of A in an environment where r i is bound to B i is the same as the semantics 

of  A* provided r* is initially set to the encoding of the relation corresponding to procedure r i. For a 

program A, .,?b(A) ~ .,fo(A*). 

As it happens, Acre is a way ~o construct A* so that if A has no non-local use of variables, then 

neither does A*. This means that if A is in L4 and the only procedures free in A are formals, then A* is a 

program of L4. Consequently, if I is expressive then SP(A*,U) is expressible in I for such A. 

Using A*, we can carry out the relative completeness proof without the expressiveness problems of 

formula (2). For each statement A whose frce procedures are the formals r 1 . . . . .  r a and declared 

procedures Pl . . . . .  Pie we can show that the following is provable in the axiom system 

(3) ~ {R~ . . . . .  R ,  P~ . . . . .  Pk} --' {U} a {SP(E l A)*} 

where E is any environment such that (E I A)* is a program, and R 1 . . . . .  R n and P}., . . . .  PI~ are 

formulas of tbe  logic which describe r 1 . . . . .  r and Pl . . . . .  Pie respectively. Intuitively, R i has the form R i 

(r i , ri~, and_says that the semantics of  rj is a subset of the relation encoded by r* For r i of  type ri(~), R i is 

just {~" = x0}ri(x- ) {SP(ri(x-)* , ~' = x0}, For higher types, a more complex formula is defined by induction; e.g., 

for rj(Z: ri) where r i has type ri(x-'), Rj is 

V r  i r~(Ri(ri, ~ ---* { r  = x~'} rj (~': ri) {SP(rj(Z: ri)*,r = k~}) 

Similarly, Pi is a formula which says that the semantics of  Pi is a subset of the semantics determined by the 
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environment E and the relations for r r . . . ,  r n encoded by r~', , . . ,  r*., The fi~rmulas R i and Pi give the 

general representation in our logic 0fthe meaning of pa~cedures, as alluded to earlier. 

In the full paper, we show that (3) is provable, by induction on the structure of statements. For a 

program A, (3)gives 

I-- {U} A {SP(A*,U)} 

from which the desired result follows because 

I ~ SP(A*,U) ~ SP(A,U). 

Hence, if I ~ {U} A {V}, then Th(l) I-- {U} A {V}. 

8. Conclusion 
We have presented a sound and relatively complete axiom system for the language L4. Such an axiom 

system has been sought by a number of other researchers since the appearance of [CL79]. But because of the infinite 

range problem, no completely satisfactory axiomatization has been previously given. 

In order to deal with infinite range, we introduce a class of generalized partial correctness assertions, which 

permit implication between partial correctness assertions, universal quantification over procedure names, and 

universal quantification over environment variables. These assertions enable us to relate the semantics of a procedure 

with the semantics of procedures passed to it as parameters. By using these assertions we are able to provide a new 

principle for reasoning about procedures with procedure parameters; this principle is incorporated in our recursion 

rule. 

Many of the techniques introduced in this paper appear to have application beyond L4, We believe that 

the ideas used in our recursion rule may be helpful with other languages which have infinite range [1]. Moreover, the 

way that we have structured the inductive argument in the relative completeness proof is new and may also be useful 

in this respect. Finally, in the course of the relative completeness proof we have derived some new results of 

independent interest about the power of acceptable programming languages and the existence of expressive 

interpretations. 
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