From Model Checking to Proof Checking ... and Back

Kedar Namjoshi
Bell Labs

April 29, 2005
Abstraction \circ Model Checking $= \text{Deductive Proof}$

MODEL CHECKING

$M \models \phi$

PROOF CHECKING

$M \vdash \phi$

Certifying Model Checker

Completeness

Proof Lifting
I. From Model Checking to Proof Checking

We show how to build a “certifying” model checker, one that generates a proof to justify its result.

Why bother?

- Proofs generalize counterexample traces for failure
- A proof is an *independently-checkable* certificate for success (think PCC for temporal properties)
- A proof is a convenient data structure for interactive exploration and incremental model checking
The CTL logic is built out of atomic propositions, boolean operators, and the *temporal* operators $EX(\phi)$ ("ϕ holds of some successor"), $E(\phi W \psi)$ ("ϕ unless ψ"), and $E(\phi U \psi)$ ("ϕ until ψ").

Some derived operators:
- $EF(\phi)$ ("ϕ is reachable") = $E(\text{true} U \phi)$
- $AX(\phi)$ ("all successors satisfy ϕ") = $\neg EX(\neg \phi)$
- $AG(\phi)$ ("ϕ is invariant") = $\neg EF(\neg \phi)$
The basic CTL operators can be defined as fixpoints of EX-formulas.

- $\text{EF}(\phi) = (\min Z : \phi \lor \text{EX}(Z))$

- $\text{E}(\phi \text{W} \psi) = (\max Z : \psi \lor (\phi \land \text{EX}(Z)))$

Fixpoint formulas can be re-worked into a structurally simple notation: alternating automata.
Simple Alternating Automata (SAA)

Theorem 0. Every CTL formula can be represented by an SAA of proportional size.

(Euichi) acceptance set, \(F \), is empty.

This is just the parse graph of \((\exists(Z) (\exists(Z) P \land \exists(Z) \min Z : P) \lor \exists(Z) P) \).

Theorem 0. \(EF (P) \) has a 3-state automaton, with initial state \(q_0 \) for propositions and \(EX \).

A SAA is just like an NFA, except that the transition function \(\delta \) maps a state to a boolean formula over atomic propositions.
An Automaton-based proof system

To show that a program M with state set S and transition relation R satisfies an automaton property (Q, \hat{q}, δ, F) we need, for each automaton state q:

- An *invariance* predicate, $\phi_q \subseteq S$, and

- A partial *rank function*, $\rho_q : S \rightarrow \mathbb{N}$

Roughly speaking, the invariance assertions state that any (reachable) state of M satisfying q falls within the “safe” set ϕ_q. The rank function marks the “distance” to reaching a Büchi state; it is re-set when the distance is 0.
Conditions for a valid Proof

- **Consistency:** ρ_q is defined for every state in ϕ_q

- **Initiality:** Every initial state of M satisfies ϕ̂

- **Safety and Progress:** Based on $\delta(q)$

 - l (a literal): $\phi_q(s) \Rightarrow l(s)$, for all s.

 - $(\lor j : q_j)$: (similarly for \land)
 $\phi_q(s) \Rightarrow (\exists j : \phi_{q_j}(s) \land (\rho_{q_j}(s) <_q \rho_q(s)))$

 - $\text{EX}(r)$: (similarly for AX)
 $\phi_q(s) \Rightarrow (\exists t : sRt : \phi_r(t) \land (\rho_r(t) <_q \rho_q(s)))$

The relation $a <_q b = \text{if } q \notin F \text{ then } a < b \text{ else } true$

Progress and safety have to be checked together because of the EX and \lor operators.
Generating a Proof-I

Key: model check with automata instead of CTL

1. Turn CTL specification into a simple automaton
2. Form an AND-OR product graph of the program M and automaton A
3. Check the canonical property: does Player I have a winning strategy?

$$W_I = \max Z; \min Y :$$

$$tt \lor$$

$$\left(\text{OR} \land (F \Rightarrow \text{EX}(Z)) \land (\neg F \Rightarrow \text{EX}(Y)) \right) \lor$$

$$\left(\text{AND} \land (F \Rightarrow \text{AX}(Z)) \land (\neg F \Rightarrow \text{AX}(Y)) \right) $$
Generating a Proof-II

Now set:

1. the invariant \(\phi_q \) to be \(\{ s : (s, q) \in W_I \} \)
2. the rank \(\rho_q(s) \) to the index of the earliest stage for \(Y \) where \((s, q) \) is added, during the last \(Z \) iteration.

This works!

Theorem 1 The proof system is sound and (relatively) complete.
Problem: we do not know before-hand whether the check succeeds or fails.

Immediate Solution: Generate proofs after normal model checking. (this requires two runs of the model checker)

Better Solution? Exploit duality. If W_I fails to hold of all initial states, then its dual, W_{II}, holds of some initial state. So keep approximations for both Y and Z, and use whichever is appropriate at the end.
A Simple Example

2-process, Atomic Bakery Protocol

```plaintext
\[
\text{var } st_1, st_2 : \{N, W, C\} \\
(* \text{N=“Non-critical”, W=“Waiting”, C=“Critical” } *) \\
\text{var } y_1, y_2 : \text{natural} \\
\text{initially } (st_1 = N) \land (y_1 = 0) \land (st_2 = N) \land (y_2 = 0)
\]

<table>
<thead>
<tr>
<th>Event</th>
<th>Condition</th>
<th>Transition</th>
</tr>
</thead>
<tbody>
<tr>
<td>wait_1</td>
<td>( st_1 = N )</td>
<td>( \leftarrow) ( st_1, y_1 := W, y_2 + 1 )</td>
</tr>
<tr>
<td>enter_1</td>
<td>( st_1 = W \land (y_2 = 0 \lor y_1 \leq y_2) )</td>
<td>( \leftarrow) ( st_1 := C )</td>
</tr>
<tr>
<td>release_1</td>
<td>( st_1 = C )</td>
<td>( \leftarrow) ( st_1, y_1 := N, 0 )</td>
</tr>
<tr>
<td>wait_2</td>
<td>( st_2 = N )</td>
<td>( \leftarrow) ( st_2, y_2 := W, y_1 + 1 )</td>
</tr>
<tr>
<td>enter_2</td>
<td>( st_2 = W \land (y_1 = 0 \lor y_2 &lt; y_1) )</td>
<td>( \leftarrow) ( st_2 := C )</td>
</tr>
<tr>
<td>release_2</td>
<td>( st_2 = C )</td>
<td>( \leftarrow) ( st_2, y_2 := N, 0 )</td>
</tr>
</tbody>
</table>
```
The Abstracted Protocol

Abstraction: \(b_1 = (y_1 = 0); b_2 = (y_2 = 0); b_3 = (y_1 \leq y_2) \)

\[
\begin{align*}
\text{var } & st_1, st_2 : \{N, W, C\} \\
\text{var } & b_1, b_2, b_3 : \text{boolean} \\
\text{initially } & (st_1 = N) \land b_1 \land (st_2 = N) \land b_2 \land b_3 \\
\text{wait}_1 & \quad st_1 = N \leftrightarrow st_1, b_1, b_2, b_3 := W, false, b_2, false \\
\text{enter}_1 & \quad st_1 = W \land (b_2 \lor b_3) \leftrightarrow st_1, b_1, b_2, b_3 := C, b_1, b_2, b_3 \\
\text{release}_1 & \quad st_1 = C \leftrightarrow st_1, b_1, b_2, b_3 := N, true, b_2, true \\
\text{wait}_2 & \quad st_2 = N \leftrightarrow st_2, b_1, b_2, b_3 := W, b_1, false, true \\
\text{enter}_2 & \quad st_2 = W \land (b_1 \lor \neg b_3) \leftrightarrow st_2, b_1, b_2, b_3 := C, b_1, b_2, b_3 \\
\text{release}_2 & \quad st_2 = C \leftrightarrow st_2, b_1, b_2, b_3 := N, b_1, true, b_1
\end{align*}
\]
For the mutual exclusion property $\phi = AG(\neg(C_1 \land C_2))$, the invariants are just the set of reachable states.
Let ξ be a simulation relation from M to \overline{M}. A proof (ϕ, ρ) on \overline{M} can be concretized to a proof (ϕ', ρ') on M by letting

$$
\phi'_q(s) \equiv (\exists t : s \xi t \phi_q(t)), \text{ and }
\rho'_q(s) = (\min t : s \xi t \land \phi_q(t) \colon \rho_q(t))
$$

So:

$$
\phi'_q(st_1, st_2, y_1, y_2)
= \quad (\text{by definition})
(\exists b_1, b_2, b_3 : b_1 \equiv (y_1 = 0) \land b_2 \equiv (y_2 = 0) \land b_3 = (y_1 \leq y_2) \land
\phi_q(st_1, st_2, b_1, b_2, b_3))
= \quad (\text{simplifying})
\phi_q(st_1, st_2, (y_1 = 0), (y_2 = 0), (y_1 \leq y_2))
$$
It is possible to design a model checker which generates an independently checkable proof of its results. This can be done quite easily: COSPAN modification (experimental) about 200 lines of C. Generated proofs have several applications ... and perhaps some as-yet-unknown ones!
Abstraction ◦ Model Checking = Deductive Proof

MODEL CHECKING

\[M \models \phi \]

Abstraction

PROOF CHECKING

\[\overline{M} \models \phi \]

Completeness

Certifying Model Checker

\[M \vdash \phi \]

Proof Lifting
II. Completeness of Verification via Abstraction
(joint work with Dennis Dams)

Given: Program M, property ϕ; to check $M \models \phi$
Construct Abstraction: a finite program \overline{M}
Model Check: whether $\overline{M} \models \phi$

An Abstraction Framework specifies the precise relationship between M and \overline{M}.

Soundness: for any M, ϕ: if $\overline{M} \models \phi$, then $M \models \phi$

Completeness: for any M, ϕ: if $M \models \phi$, there exists an abstraction \overline{M} such that $\overline{M} \models \phi$
Summary of New Results

For properties expressed in branching time temporal logics (e.g., CTL, CTL*, or the μ-calculus)

* **Negative:** Several well-studied abstraction frameworks are *incomplete*. Examples: bisimulation [Milner71], modal transition system refinement [Larsen-Thomsen88]. This holds even with enhancements such as *fairness* or *stuttering*.

* **Positive:** A simple extension of modal transition systems with new *focus* operations gives rise to a complete framework.

This is intimately connected to the representation of properties by finite tree automata.
Completeness and “Small Model” Theorems

Small Model Theorem [Hossley-Rackoff 72, Emerson85]: Any satisfiable property of the μ-calculus has a finite model.

Why doesn’t this settle the question?
... because the small model need not abstract M.

Example:

N is a small model for the property “there is a reachable Q-state”

But N and M are unrelated by, say, simulation or modal refinement.
A (Kripke) MTS is a transition system with

- **two** transition relations: *may* (over-approximate) and *must* (under-approximate) transitions, with \(\text{must} \subseteq \text{may} \)

- a **3-valued** \(\{\text{true}, \text{false}, \bot\} \) propositional valuation at states

For temporal logics, *existential path* modalities (e.g., \(\text{EX} \)) are interpreted over must-transitions; *universal path* modalities (e.g., \(\text{AX} \)) over may-transitions.

The outcome of model checking is also 3-valued.
Abstraction with MTS’s

If \(c \sqsubseteq a \) then:
- \(\forall c' : c \rightarrow c' \Rightarrow (\exists a' : a \xrightarrow{\text{may}} a' \land c' \sqsubseteq a') \)
- \(\forall a' : a \xrightarrow{\text{must}} a' \Rightarrow (\exists c' : c \rightarrow c' \land c' \sqsubseteq a') \)

Program M

integer x;
L1: \{x is even\}
L2: if (*)
 then x := x+2
 else x := x+4;
L3:

\{L2, even(x)\}
\{L3, even(x)\} \{L3, div3(x)\}

\[\text{may transition}\]
\[\text{must transition}\]
Program M
L0: initially even(x)
L1: while (x > 0)
do x := x-2 od;
L2: x := -1

Let $\phi = E(even(x)W(x < 0))$.

Theorem 2 No finite MTS abstracts M and satisfies ϕ.

Proof by contradiction. The property holds for must-paths in \overline{M}; so either (i) $even(x)$ holds forever, or (ii) by finiteness, x is negative within a bounded number of steps. The must-abstraction enforces these properties at every initial state of M, a contradiction!
Consequences and Variations

...
State-of-the-art for Completeness

* Model Abstraction: abstract the model, preserve the property

- μ-calculus: *fair Focused Transition System abstraction*

* Game Abstraction: abstract the model-checking game, preserve the winning condition.

- μ-calculus: fair alternating refinement+choice [Nami Joshi 2003]
The Need for Focus Operations

Transition $a \xrightarrow{\text{must}} b$ exists only if every $c : c \sqsubseteq a$ has a transition to a state abstracted by b.

This forces any abstract MTS for our example to be infinite. E.g., $L_1 : \text{even}(x) \not\rightarrow L_2 : (x < 0)$; so the source must be split; say to $L_1 : (x < 0), L_1 : (x \geq 0) \land \text{even}(x)$.

But again $L_1 : (x \geq 0) \land \text{even}(x) \not\rightarrow (x < 0)$.

Can one somehow relax the must-transition definition? (Such a relaxation must preserve soundness.)
An alternating automaton for $E(\text{even}(x) \land W(x < 0))$

During model checking, each automaton state is associated with a set of program states.

Can an automaton be viewed as an abstract transition system?
A *focus* step splits an abstract state into a set of more precise abstract states (case-splitting).

A Focused Transition System (FTS) is an MTS with focus and (dual) de-focus steps. For our example:

- $a_0 : \overline{L0, L1 : even(x)}, L2 : (x < 0)$
- $a_1 : L2 : (x < 0)$
- $a_2 : \overline{L0, L1 : even(x)}$
- $a_3 : \overline{L0, L1 : even(x)}$
- $a_4 : \overline{L0, L1 : even(x)}$

Note the similarity to the automaton — this is no accident.
Completeness via Automata

Theorem 4 For any M and any μ-calculus property ϕ, if $M \models \phi$, there is a finite FTS \overline{M} such that \overline{M} both abstracts M and satisfies ϕ.

The FTS \overline{M} may be obtained by: (i) converting ϕ to a *finite* alternating tree automaton A_ϕ, then (ii) converting A_ϕ to an FTS \hat{A}_ϕ (roughly) as follows.

- **AX-move** \Rightarrow may transition
- **EX-move** \Rightarrow must transition
- **∨-move** \Rightarrow focus transition
- **∧-move** \Rightarrow de-focus transition
- acceptance condition \Rightarrow fairness condition
Notice that $\overline{M} = \hat{A}_\phi$ is independent of M! Thus, \hat{A}_ϕ is a maximal model for ϕ

By results of [Emerson-Jutla 1991], this maximal model has size linear in the size of ϕ.

Maximal models reduce model checking to simulation-checking.
May-Must abstraction *does not guarantee* the existence of finite abstractions for existential temporal properties.

The key to obtaining completeness seems to be a notion of ϵ-state-splitting we call a *focus* step.

FTS’s are intimately connected to alternating tree automata. It turns out [Dams-Namjoshi, VMCAI 2005] that non-deterministic automata suffice. In effect: transition systems + fairness + *choice*

FTS’s also ensure more precision in must-abstractions. (Cf. [de Alfaro-Godefroid-Jagadeesan, LICS 2004])
To sum up

Model Checking and Proof Checking are closely linked, with Abstraction as the “glue”.
I. From Model Checking to Proof Checking

[Stevens-Stirling, TACAS 1998] *Practical Model-Checking Using Games*

[Namjoshi, CAV 2001] *Certifying Model Checkers*

[Peled-Zuck, SPIN 2001] *From Model Checking to a Temporal Proof*

[Peled-Pnueli-Zuck, FSTTCS 2001] *From Falsification to Verification*

[Clarke-Jha-Lu-Veith, LICS 2002] *Tree-like Counterexamples in Model Checking*

[Tan-Cleaveland, CAV 2002] *Evidence-Based Model Checking*

[Gurfinkel-Chechik, TACAS 2003] *Proof-like counterexamples*

[Namjoshi, VMCAI 2003] *Lifting Temporal Proofs through Abstractions*

[Namjoshi, CAV 2004] *An Efficiently Checkable, Proof-Based Formulation of Vacuity in Model Checking*
II. ... and Back

[Uribe, Thesis 2000] *Abstraction-Based Deductive-Algorithmic Verification of Reactive Systems*

[Kesten-Pnueli, Inf. Comp. 2000] *Verification by augmented finitary abstraction*

[Namjoshi, CAV 2003] *Branching-Time Abstraction*

[Dams-Namjoshi, LICS 2004] *The Existence of Finite Abstractions for Branching Time Model Checking*

[Dams-Namjoshi, VMCAI 2005] *Automata as Abstractions*
FTS’s and Disjunctive MTS’s [Larsen-Xinxin 1990]

DMTS’s introduced to guarantee a solution to CCS equations of the form \(\{C_i(X) = E_i\} \)

DMTS’s split a must-transition into cases: instead of \(a \xrightarrow{\text{must}} b \),
allow \(a \xrightarrow{\text{must}} \{B_0, B_1, \ldots\} \) where the \(B_i \) are sets of abstract states.

FTS’s are different in that one first splits state, then constructs ordinary must transitions.