Grady Feature Selection for Supervised Learning

- matching pursuit (Mallet & Zhang 1993)
 - use correlation between residual & candidate features
 - select feature w/highest correlation

- orthogonal matching pursuit for regression (OMP)
 - recomputes residual after each feature added

- OMP algorithm
 - input: \(X \in \mathbb{R}^{n \times k} \), \(y \in \mathbb{R}^n \), \(\beta \in \mathbb{R} \) (given input feature set)
 - output: approx weights \(w \)
 - \(I = \emptyset \)
 - \(w = 0 \) (0 vector, length \(k \))
 - repeat
 - \(c_i = |X^T (y - Xw)| \)
 - \(j = \arg \max_i c_i \)
 - if \(c_j > \beta \), add \(j \) to \(I \)
 - \(w_j = X^+_j \cdot y \)
 - until \(c_j \leq \beta \) or \(I = \{ \} \) (all features added)

- comp cost: at least \(n \times k \) per iteration
 - \(O(k^2) \) for inversion

- OMP properties

 define \(y \) as \(m \)-sparse in \(X \) if \(\exists X_{opt} \) composed of \(m \) columns of \(X \) s.t. \(y = X_{opt} \cdot w_{opt} \)
 - and there is no \(X' \) w/fewer columns of \(X \) s.t. \(y \)
 can be represented as \(y = X' \cdot w \)

 thm (Tropp 2004)
 - if \(y \) is \(m \)-sparse in \(X \) and \((1) \)
 - \(\max_{i \notin opt} \|X_{opt}^T \cdot x_i\|_1 < 1 \) \((2) \)
 - then OMP called with \(X, y \) and \(\beta = 0 \) will return \(w_{opt} \)
 in \(m \) iterations.

 note: any orthogonal basis \(X \) satisfies equation 2.
 - the above (I believe) holds for \(\infty \) data, exact sparsity
 - no noise
 - Tropp has an extension for approx sparsity
 - Zhang (2009) has extension for noisy case
 - but still assumes infinite data
Recall LSTD fixed point & Bellman residual minimization

Bellman residual projection π

Fixed pt error V

πV

Bellman residual min w w.r.t.

$$\min_w \| R + \gamma \bar{V} w - \bar{V} w \|^2 = \| R - (\bar{V'} - \gamma \bar{V'}) w \|^2$$

Use OMP algorithm where

$y = R$

$X = \bar{V'} - \gamma \bar{V'}$

OMP-TD (OMP w/LSTD)

Interleave fixed pt calculation given current selected features with adding features that correlate most with Bellman error

OMP-TD algorithm

Input

$\bar{V} \in \mathbb{R}^{n \times k}$: $\bar{V}^i_j = y_j(s_i)$

$\bar{V}' \in \mathbb{R}^{n \times k}$: $\bar{V}'^i_j = y_j(s'_i)$

$R \in \mathbb{R}^n$, $R_i = r_i$

$q \in [0,1]$, $\beta \in \mathbb{R}$

Output: w

$I \in \{1\}$

$w = 0$

Repeat

$c = \| R + \gamma \bar{V} w - \bar{V} w \|^2 / n$ \hspace{1em} // find features correlate w with Bellman error

$j = \arg \max_i i \in X \cap c$

if $c_j > \beta$, $X = X \cup j$

$w_X = (\bar{V}' \bar{V}^{-1} \bar{V} - \gamma \bar{V}' \bar{V}^{-1} \bar{V})^{-1} \bar{V} R$ \hspace{1em} // compute fixed point using selected features

Until $c_j \leq \beta$ or $X = \emptyset$

Guarantees/Properties

OMPTD

Good news: if feature j adding has a corresponding $c_j >$ some threshold

Then it improves a bound on the distance between V^* and the fixed point
but can be suboptimal consider
\[S_i \rightarrow S_{i+1} \]
rewards:
\[
V^* = \begin{bmatrix}
-\gamma \cdot y^2 & 1 & 1 & 1 & 1 \\
0 & 1 & -\gamma \cdot y^2 & 1 & 0
\end{bmatrix}
\]
let \(\mathbf{v} \) be an orthonormal basis defined by indicator functions
\[\psi_i(s) = 1_{s=s_i} \]
\(V^* \) is 3-sparse in \(\mathbf{v} \)
\(\mathbf{v} \) opt only requires features 2, 3 & 4

exercise
at start \(w = 0 \)
1) what is residual vector? \((R + \gamma \cdot \mathbf{v} \cdot \omega - \mathbf{v} \cdot \omega) \)
assume have \(\mathbf{v} \) and \(\mathbf{v}' \) for all states
2) what feature will OMP-TD select first?
\[
\begin{bmatrix}
1 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0
\end{bmatrix}
\begin{bmatrix}
-\gamma \cdot y^2 & y^2 & 1 & 0 & 0
\end{bmatrix}
= \begin{bmatrix}
1 & 1 & 0 & 0 & 0
\end{bmatrix}
\]
\(\gamma = 0.65 \), 1st feature

problem: implies even if \(V^* \) is m-sparse, OMP-TD cannot guarantee recovery in m iterations
eg. may include extra features
can modify example to make many unnecessary features added

what about OMP-BRM?
lemma 1: if \(V^* \) is m-sparse in \(\mathbf{v} \) then \(R \) is m-sparse in \((\mathbf{v} - \gamma P \mathbf{v}) \)

proof: recall \(V^* = (I - \gamma P)^{-1} R \)
\[
(I - \gamma P) R = \mathbf{v}_{opt} w_{opt}
\]
\[
R = \mathbf{v}_{opt} w_{opt} - \gamma P \mathbf{v}_{opt} w_{opt}
\]
\[
= (I_{opt} - \gamma P \mathbf{v}_{opt}) w_{opt}
\]
assume other direction, that have found a m-sparse rep of \(R \) with param \(w_{opt} \) in basis \((\mathbf{v} - \gamma P \mathbf{v}_{opt}) \)
then \(R = (I_{opt} - \gamma P \mathbf{v}_{opt}) w_{opt} \)
\[
= (I - \gamma P) \mathbf{v}_{opt} \]
\[
(I - \gamma P)^{-1} R = \mathbf{v}_{opt} w_{opt}
\]
\[
V = \mathbf{v}_{opt} w_{opt}
\]
\(\Rightarrow \) if perform OMP on \((\mathbf{v} - \gamma P \mathbf{v}) \) basis on target \(R \), then indices of \((\mathbf{v} - \gamma P \mathbf{v}) \) should be selected to rep \(V \) (and \(W = \mathbf{v}_{opt} \) same)
exercise: some example, run OMP-TD

1) What’s X?

$X = \frac{\bar{\mathbf{z}}}{-\gamma \bar{\mathbf{p}}}$

$X \in \mathbb{R}^{n \times k}$

$X(s_1,:) = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 1 & -\gamma & 0 & 0 \end{bmatrix}$

$X = \begin{bmatrix}
1 & -\gamma & 0 & 0 \\
0 & 1 & -\gamma & 0 \\
0 & 0 & 1 & -\gamma \\
0 & 0 & 0 & 1 & -\gamma
\end{bmatrix}$

2) What is the 1st selected feature of X (selected for R)?

$\begin{bmatrix}
-\gamma & -\gamma^2 & -\gamma^3 \\
-\gamma & -\gamma^2 & -\gamma^3 \\
-\gamma & -\gamma^2 & -\gamma^3 \\
-\gamma & -\gamma^2 & -\gamma^3
\end{bmatrix} = \begin{bmatrix}
-\gamma & -\gamma^2 & -\gamma^3 \\
-\gamma & -\gamma^2 & -\gamma^3 \\
-\gamma & -\gamma^2 & -\gamma^3 \\
-\gamma & -\gamma^2 & -\gamma^3 + 1
\end{bmatrix}$

and if you go through rest of steps works out

Theorem: if \mathbf{V}^* is m-sparse in $\bar{\mathbf{z}}$ and $\max_{\mathbf{r}} \| \mathbf{X}^\dagger \mathbf{X}^\dagger \mathbf{X} \|_1 < 1$ (remember \mathbf{X}^\dagger is pseudo-inverse)

for $X = \frac{\bar{\mathbf{z}}}{-\gamma \bar{\mathbf{p}}}$

then OMP-BRM with $\mathbf{B}=0$ will return \mathbf{w} s.t. $\mathbf{V}^* = \mathbf{w}$

In at most m iterations

Note: may be hard to know in advance

Still assuming

∞ data

no noise (but expect can be extended)