Literature Assignment 0

Due: September 29, 2015

Literature assignments will typically deal with papers describing new hypotheses, thought experiments on how to apply new scientific techniques, and discussions about which technique might be the best fit for a particular task. However, in this assignment we ask you to consider how scientific misconduct has affected human society, scientific community, academic institutions, and you as an individual. These articles are focused on scientific research and publication, but many have close analogs in classes such as this one.

Article:

Read this article and briefly answer the following questions. You may read additional materials, if you wish. If you do, you must cite your sources. *You may not quote verbatim without attribution*. This assignment may be submitted in class, in MI646, or electronically to comp-bio@cs.cmu.edu.

1. Aylmer Fisher accused Gregor Mendel of doctoring his data.
 a. What was the basis of Fisher’s accusation?

 b. What does Luscher consider to be the key issue in assessing whether Mendel committed fraud?
2. Luscher points out that while Mendel may or may not have falsified his data, Mendel’s conclusions were correct. In what way is scientific misconduct harmful, when the conclusions are incorrect? In what way is scientific misconduct harmful when the conclusions are correct?

3. Is dropping data points ever justified? If yes, give an example. If no, explain why not.

4. What responsibilities does a scientist incur when s/he agrees to be an author on a manuscript that is submitted for publication?

5. Alspach states that according to the COPE guidelines, it is the duty of the “culpable editor” to ask that a suspected case of misconduct be investigated if the author does not provide an explanation that the editor considers to be adequate. What governing bodies may carry out this investigation? Why might those institutions be expected to carry out a fair investigation? Why might those institutions be unlikely to carry out a fair investigation?
6. In each of the following scenarios, did scientific misconduct occur? Why or why not? Explain your reasoning.

a. Professor Victor Bogon of the University of Kansas’ Oceanview Campus publishes two separate articles reporting different results. They have different titles and publication dates. There is little similarity between the text in the introduction, results and discussion sections of the two articles. The background sections, however, are identical.

b. Dr. Bogon uses phylogenetic methods to infer the evolution of North American Squirrels. Dr. Smith's group at the Marshview campus of the University of Arizona has been using similar methods to infer the evolutionary history of the capybara. Each group publishes an article reporting their respective results. The methods sections of the two articles read very similarly, but none of the sentences or phrases are exactly the same. The papers cite many of the same articles. The other sections of the articles are not very similar.

c. One year later, Dr. Bogon turns his phylogenetic gaze to marmots and prairie dogs. In this study, he applies a new method, first described in a publication by Dr. Smith's group, and finds a startling result. Bogon submits a manuscript on this work. In the methods section, Bogon borrows heavily from Smith's capybara paper. Many of the sentences in Bogon's manuscript are identical to sentences in the Smith paper. Bogon cites the Smith article in the introduction to his manuscript.
d. Dr. Bogon’s article about ground squirrels includes a table on a set of "speciation genes" that he hypothesizes contributed to the divergence of Mexican Ground Squirrels and Thirteen-lined Ground Squirrels. In a third manuscript, Dr. Bogon uses this same data in a discussion of the speciation of marmots and ground squirrels. The third manuscript contains a table that includes the data from the original ground squirrel publication and cites that publication in the results section. The table of speciation genes is not specifically associated with a citation to the original paper.

e. Dr. Smith's capybara article includes an analysis of predicted genes in the capybara genome. After the manuscript is published, Smith receives an email from Dr. Presley, of Nashville University, pointing out that some of the predicted genes are not valid open reading frames, either lacking start codons or containing premature stop codons. After these incorrectly predicted genes are removed from the analysis, Smith's results are no longer statistically significant, invalidating the conclusions of the paper. Dr. Smith retracts this paper.

f. A graduate student in the Brown lab is studying the impact of prairie dog colonization on ground water. The student uses remote sensors to measure ground water pH in several prairie locations daily, over a three month period. An analysis of these data reveals that two measurements are more than eight standard deviations from the mean. The student reanalyzes the data without these two data points and writes up the results. In the methods section, she states that two data points were dropped from the analysis and gives the statistical rationale for this decision.
g. Dr. Jones, of the College of St. Radegund, Cambridge University, is a very famous scholar in the area of rodent systematics. Dr. Smith sends Dr. Jones a copy of an unpublished manuscript on prairie dogs. Dr. Jones responds with positive comments and suggests a few minor changes in wording. Dr. Smith makes the suggested changes and submits the manuscript to a journal, after adding Dr. Jones to the author list.

h. In the prairie dog paper, Dr. Smith introduced a novel phylogenetic method developed in her laboratory. Later, Dr. Jones uses this new method in an analysis of the evolutionary origins of chipmunks and writes up the results for publication. In Jones' manuscript, Dr. Smith's work on prairie dogs paper is cited in a section reviewing prior work on rodent evolution. Jones' methods section points out that the method used is novel, but does not state that it was first proposed by Dr. Smith's group.
7. There are many contexts in which it is important to write a review or summary of prior research: in the background section of a grant proposal, in the introduction to a publication reporting the results of original research, or in a literature review article. When writing a review of this type, the author must take care to paraphrase appropriately; that is, to give a summary that correctly describes the original work and is written in the words of the reviewing author, without "borrowing" from the original publication.

In the following questions, you are asked to compare an excerpt from a publication with a paragraph paraphrasing the original text. Did the author of the second text summarize the original text correctly and appropriately? Did the author of the second text plagiarize the original text? Did the author of the second text paraphrase the original text incorrectly; that is, did she use her own words, but change the meaning of the original text? Explain your reasoning.
Original text: "Concluding remarks and perspectives. In conclusion, we present evidence that two independent engineered strains (ASI and COS) expressing high levels of KinA induce sporulation efficiently irrespective of nutrient availability. With ASI, we show that a small increase in the level of the KinA protein beyond a certain level triggers sporulation. Furthermore, we demonstrate that the COS strain bypasses the requirement of nutrient starvation conditions to trigger sporulation. In the COS strain, grown under conditions of nutrient excess, several key sporulation genes show temporal and spatial expression patterns, which are normally observed for the wild-type strain only under starvation conditions. These results, obtained from both ASI and COS cells, suggest that the threshold level, but not the signal-dependent activation, of the major sporulation kinase KinA acts as a molecular switch in the initial decision of whether to commit to sporulation or not, although the mechanisms that increase the level of KinA remain elusive."¹

New Text: Easwaramoorthy and colleagues (Easwaramoorthy P. et al. J. Bact. 192, 3870–82, 2010) present evidence that two independently engineered strains that express high levels of the major sporulation Kinase, KinA, are capable of efficient sporulation, irrespective of nutrient availability. In one strain, they showed that when KinA expression exceeds a threshold level, due to a small increase in abundance, KinA acts as a molecular switch in the initial decision of whether to commit to sporulation. In the other strain, they observed several temporal and spatial expression of key sporulation genes when the strain was grown under conditions of nutrient excess. In wild-type, these expression patterns are normally observed only under starvation conditions. Taken together, these results suggest that signal-dependent activation is not the deciding factor. The mechanisms that increase the level of KinA remain unknown.

8. Compare the following excerpt from a publication with the paragraph paraphrasing the original text. Did the author of the second text summarize the original text correctly and appropriately? Did the author of the second text plagiarize the original text? Did the author of the second text paraphrase the original text incorrectly; that is, did she use her own words, but change the meaning of the original text? Explain your reasoning.

Original text: "Concluding remarks and perspectives. In conclusion, we present evidence that two independent engineered strains (ASI and COS) expressing high levels of KinA induce sporulation efficiently irrespective of nutrient availability. With ASI, we show that a small increase in the level of the KinA protein beyond a certain level triggers sporulation. Furthermore, we demonstrate that the COS strain bypasses the requirement of nutrient starvation conditions to trigger sporulation. In the COS strain, grown under conditions of nutrient excess, several key sporulation genes show temporal and spatial expression patterns, which are normally observed for the wild-type strain only under starvation conditions. These results, obtained from both ASI and COS cells, suggest that the threshold level, but not the signal-dependent activation, of the major sporulation kinase KinA acts as a molecular switch in the initial decision of whether to commit to sporulation or not, although the mechanisms that increase the level of KinA remain elusive."^2

New text: Easwaramoorthy and colleagues (Eswaramoorthy P. et al. J. Bact. 192, 3870–82, 2010) used two artificially constructed strains to investigate the conditions that govern the switch-like behavior of KinA, the signaling kinase that controls sporulation initiation. In one of these strains, they observed that a small increase in expression is enough to initiate sporulation. In the other strain, they observed sporulation initiation in response to environmental conditions very different from those that trigger sporulation in wild-type cells. Instead of responding to nutrient starvation, the mutant strain expresses key sporulation genes in response to nutrient excess! By decoupling KinA expression and environmental signals, Easwaramoorthy *et al.* were able to determine that KinA expression, and not environmental changes, are responsible for the decision to sporulate. The processes whereby KinA expression changes in response to environmental cues are still unknown.

9. Compare the following excerpt from a publication with a paragraph paraphrasing the original text. Did the author of the second text summarize the original text correctly and appropriately? Did the author of the second text plagiarize the original text? Did the author of the second text paraphrase the original text incorrectly; that is, did she use her own words, but change the meaning of the original text? Explain your reasoning.

Original text: "One set of circumstances under which some adaptive mutations can be prohibited is in the case of multifunctional genes. The performance of multiple functions by a single gene or ‘gene sharing’ is prevalent in nature but presents the possibility that mutations that optimize one function may compromise the other. Such an ‘adaptive conflict’ may be resolved by gene duplication followed by subfunctionalization and positive selection, thereby creating two optimized specialist genes in a manner forbidden during gene sharing." ³

New text: In their 2007 Nature paper, Hittinger and Carroll (Nature 449, 677-682, 2007) discuss the fate of a multifunctional gene after gene duplication. There are many examples in nature of a single gene that performs two or more functions. The possibilities for evolutionary change in this case are limited, because a mutation that improves the efficiency of one of the functions may decrease the efficiency of the other function. Gene duplication may free such a gene from this "adaptive conflict." If each of the two gene copies only performs one of the two ancestral functions, then both copies can mutate to improve the efficiency of their respective functions, without compromising the function performed by the other copy.

10. Compare the following excerpt from a publication with the paragraph paraphrasing the original text. Did the author of the second text summarize the original text correctly and appropriately? Did the author of the second text plagiarize the original text? Did the author of the second text paraphrase the original text incorrectly; that is, did she use her own words, but change the meaning of the original text? Explain your reasoning.

Original text: "In this work, we have tracked the evolution of combinatorial gene regulation by the highly conserved transcriptional regulator Mcm1 and each of its known cofactors across the ascomycete fungal lineage. Our analysis shows that the genes regulated by Mcm1 have changed considerably over the evolutionary time scales represented by this lineage; our results reveal many more differences than similarities in the Mcm1 circuitry. Regulation by Mcm1 is more pervasive in K. lactis and C. albicans, where 12% of all genes are bound, than in S. cerevisiae, where 4% of genes are bound. The fraction of genes shared as targets between all three species is very low (13%–18%), and we have demonstrated that this is due to both substantial gain and loss of Mcm1 binding sites along each branch of this phylogeny ..."

New text: Tuch and his colleagues (Tuch et al, PLoS Biol., 6, 2008, p. e38) showed that genes regulated by the conserved transcription factor Mcm1 have changed considerably in the course of ascomycete fungal evolution. In fact, there are more differences than similarities in the MCM1 circuitry of the species studied. MCM1 regulates more genes in K. lactis and C. albicans than it does in S. cerevisiae. Moreover, there is little overlap between the targets of MCM1 in the three species. This is because on each branch of the fungal tree, a substantial number of genes have lost MCM1 binding sites, while a substantial number of other genes have gained MCM1 sites.

11. Compare the following excerpt from a publication with the paragraph paraphrasing the original text. Did the author of the second text summarize the original text correctly and appropriately? Did the author of the second text plagiarize the original text? Did the author of the second text paraphrase the original text incorrectly; that is, did she use her own words, but change the meaning of the original text? Explain your reasoning.

Original text: "In this work, we have tracked the evolution of combinatorial gene regulation by the highly conserved transcriptional regulator Mcm1 and each of its known cofactors across the ascomycete fungal lineage. Our analysis shows that the genes regulated by Mcm1 have changed considerably over the evolutionary time scales represented by this lineage; our results reveal many more differences than similarities in the Mcm1 circuitry. Regulation by Mcm1 is more pervasive in K. lactis and C. albicans, where 12% of all genes are bound, than in S. cerevisiae, where 4% of genes are bound. The fraction of genes shared as targets between all three species is very low (13%–18%), and we have demonstrated that this is due to both substantial gain and loss of Mcm1 binding sites along each branch of this phylogeny ..."\(^5\)

New text: Tuch and his colleagues (Tuch et al, PLoS Biol., 6, 2008, p. e38) studied evolutionary changes in regulation by the yeast transcription factor MCM1 and its co-factors. Their analysis shows significant change in MCM1 regulation; in fact, expression patterns of MCM1-regulated genes are quite different in the species studied. However, the results could be compounded by the substantial gain and loss of genes in those species.