Exam 1 scores

Mean = 92.8
Median = 94

1(b) What are M, m, and g?

$M = 1$
$M = 1$
$g = -1$
$g = -1$
$m = -2$
$m = -2$

Three possibilities:
- $m > -2$ Not possible because $1+m$ would replace -1 with a better score.
- $m = -2$ $1+m = 1+2g = -1$
- $m < -2$ Violates $m > 2g$
1(b) Which algorithm?

Semi-global alignment
- Not global: top row has 0's
- Not local: the matrix has some negative values

1(c) What are M, m, and g?

A 0-valued match cell in the first column ->
- Distance function
 - $d(x,x) = 0$
 - First column must be 0's

1(c)

$d(x,x) = 0$
$d(x,_) = 1$

0+g: $\Rightarrow d(x,_) = g = 1$

Require $d(x,y)>0$

1+g: 1+g > 0+g
1(c) Which algorithm?

Semi-global alignment
- Not global: First column must have 0s if the second column has 0s and 1s
- Not local: Local alignment requires a similarity function

3) Consider k sequences \(s_1, s_2, \ldots, s_k \) and let \(M = 1 \) and \(m = g = -1 \) be the scoring function.

Let
- \(X \) be the score of the optimal global alignment of \(s_1 \) and \(s_2 \).
- \(Y \) be the score of the optimal local alignment of \(s_1 \) and \(s_2 \).
- \(Z \) be the score of the pairwise alignment of \(s_1 \) and \(s_2 \) induced by the optimal global alignment of \(s_1, s_2, \ldots, s_k \).

Give an inequality that expresses the relationship between \(X \), \(Y \) and \(Z \).

Explain your answer.

\[Y \geq X \]

Why? \(Y \) must be positive. \(X \) can be negative.
3) Consider k sequences s_1, s_2, \ldots, s_k and let $M = 1$ and $m = g = -1$ be the scoring fn. Let
- X be the score of the optimal global alignment of s_1 and s_2.
- Y be the score of the optimal local alignment of s_1 and s_2.
- Z be the score of the pairwise alignment of s_1 and s_2 induced by the optimal global alignment of s_1, s_2, \ldots, s_k.

Give an inequality that expresses the relationship between X, Y, and Z. Explain your answer.

\[
X \geq Z
\]

Why? The induced alignment reflects relationships in the entire family. The optimal alignment of s_1 and s_2 with respect to s_3, \ldots, s_k may result in a sub-optimal alignment between s_1 and s_2.

5(a)

Exact dynamic programming requires time t_1 to obtain an MSA of k sequences of length n. Let t_2 be the time required to obtain an MSA of k sequences of length $3n$ using the same method. What is t_2/t_1?

\[
t_1 = O(n^k2^kk^2)
\]
\[
t_2 = O((3n)^k2^kk^2)
\]

\[
\frac{t_2}{t_1} = \frac{O((3n)^k2^kk^2)}{O(n^k2^kk^2)}
\]

\[
\frac{t_2}{t_1} = 3^k
\]
5(b)

Exact dynamic programming requires time t_1 to obtain an MSA of k sequences of length n. Let t_3 be the time required to obtain an MSA of $3k$ sequences of length n using the same method. What is t_3/t_1?

$$
t_1 = O(n^k 2^k k^2)
$$

$$
t_3 = O(n^{3k} 2^{3k} (3k)^2)
$$

$$
\frac{t_3}{t_1} = O\left(\frac{n^{3k} 2^{3k} (3k)^2}{n^k 2^k k^2}\right)
$$

5(c)

$O(3^k)$ versus $O(n^2 4^k)$

Increasing k has more impact because

- “increasing k is exponentially increasing the time, while increasing n is adding a constant multiplier”

- “This makes sense because by increasing n, you’re simply adding extra boxes in the same dimensions, but by increasing k, you’re adding extra dimensions”
Jukes-Cantor model: sequence substitution at a single site

Rate of substitutions
\[P(xy) = 3\alpha \]

Probability nucleotide \(x \) remains unchanged
\[P(xx) = 1 - 3\alpha \]

In a discrete time framework, \(\alpha \) is the probability of a given substitution occurring in a single time step.

Given ancestral nucleotide \(z \), the probability of observing nucleotide \(x \) after time \(t \) is given by

\[P_{xx}(t) = \frac{1}{4} + \frac{3}{4}e^{-4\alpha t} , \quad P_{zx}(t) = \frac{1}{4} - \frac{3}{4}e^{-4\alpha t} , \quad y \neq x \]

Note that:
- At \(t=0 \), \(P_{xx}(0) = 1 \) and \(P_{xy}(0) = 0 \). This makes sense because if no time has elapsed, then no substitution can have occurred (yet).
- As \(t \to \infty \), \(P_{xx}(t) = P_{yy}(t) = 0.25 \). This says that the steady state distribution of nucleotide frequencies is uniform under the Jukes-Cantor model.

A more complex model

Different probabilities for transitions and transversions

2. Given an alignment of \(n \) nucleotides that differs at \(m \) positions, the expected number of substitutions since the divergence of the two sequences is given by

\[E_{\text{sub}} = -\frac{3}{4} \ln \left(1 - \frac{4m}{3n} \right)n. \]

For example, if we observe 200 mismatches in an alignment of 1000 nucleotides, then the number of actual substitutions is

\[-\frac{3}{4} \ln \left(1 - \frac{4 \times 200}{3 \times 1000} \right) \times 1000 = 233 \text{ substitutions} \]

Note that:
- If \(m = 0 \), then \(E_{\text{sub}} = 0 \) and the distance between the sequences is zero.
- \(m/n \leq 0.75 \) in sequences governed by the Jukes Cantor model.
- As \(m/n \to 0.75 \), \(E_{\text{sub}} \to \infty \). This is because once we reach the steady state distribution of nucleotide frequencies, \(m/n \) provides no information about how long the sequences have been diverging.
Transitions and Transversions

Pyrimidines have one ring

Purines have two rings

Transitions: substitutions within the same class of nucleotide (purine – purine or pyrimidine-pyrimidine)

Transversions: substitutions between classes (purine – pyrimidine or pyrimidine-purine)

Kimura 2 Parameter model

Rate of substitutions

\[P(xy) = \alpha + 2\beta \]

Probability nucleotide \(x \) remains unchanged

\[P(xx) = 1 - \alpha - 2\beta \]

In a single time step

\[\sigma^* = \left\{ \frac{1}{4}, \frac{1}{4}, \frac{1}{4}, \frac{1}{4} \right\} \]

From this, we can derive several quantities of interest...

Jukes-Cantor model (1969)

- All substitutions have equal probability
- Base frequencies are equal

\[p(A) = 0.25 \]
\[p(C) = 0.25 \]
\[p(T) = 0.25 \]

Given an alignment of \(n \) nucleotides that differs at \(m = m_t + m_v \) positions, where

\[m_t = \text{number of transitions}, \]
\[m_v = \text{number of transversions}, \]

the expected number of substitutions is given by

\[E[\text{sub}] = \left[-\frac{1}{2} \ln \left(1 - \frac{m_t}{n} - \frac{m_v}{n} \right) - \frac{3}{4} \ln \left(1 - \frac{4 m_v}{3 n} \right) \right] n \]
Kimura 2 parameter model (K2P) (1980)

- Transitions and transversions have different probabilities
- Base frequencies are equal

$$p(A) = 0.25$$
$$p(G) = 0.25$$
$$p(C) = 0.25$$
$$p(T) = 0.25$$

Hasegawa, Kishino & Yano (HKY) (1985)

- Transitions and transversions have different probabilities
- Unequal base frequencies

$$p(A) = \pi_A$$
$$p(G) = \pi_G$$
$$p(C) = \pi_C$$
$$p(T) = \pi_T$$

Felsenstein (1981)

- All substitutions have equal probability
- Unequal base frequencies

$$p(A) = \pi_A$$
$$p(G) = \pi_G$$
$$p(C) = \pi_C$$
$$p(T) = \pi_T$$

General Time Reversible model

- All six pairs have different substitution frequencies
- Unequal base frequencies
DNA substitution models

- Four states (A, C, G, T)
- Model specifies the probability of substitution for all possible pairs of nucleotides

<table>
<thead>
<tr>
<th>C</th>
<th>G</th>
<th>T</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C</td>
<td></td>
<td></td>
</tr>
<tr>
<td>G</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

DNA substitution model (e.g., JC, K2P, GTr)

Amino acid substitution models

- Twenty states (A, C, ... Y)
- Model specifies the probability of substitution for all possible pairs of amino acids

Amino acid substitution matrix (e.g., PAM, WAG, JTT, MtREV etc)