Position Specific Scoring Matrices
PSSM’s, profiles, weight matrices, templates…

Assume pattern has already been discovered.

Input: local MSA, $k \times n$ matrix

$A[i,j]$: jth symbol in ith sequence

Output: Scoring matrix, $|\Sigma| \times n$

$S[i,j]$: score of symbol i at position j

Position Specific Scoring Matrices
PSSM’s, profiles, weight matrices, templates…

Example:

```
WEIRD
WEIRD
WEIRE
WEIQH
```

See spreadsheets…
Position Specific Scoring Matrices
PSSM’s, profiles, weight matrices, templates...

Given $A[w,k]$ (k sequences, w positions),

the frequency of amino acid i at position j is

$$F[i, j] = \frac{n_{ij}}{k}$$

where n_{ij} is the number of instances of aa i at site j

The propensity of amino acid i at position j is

$$P[i, j] = \frac{F[i, j]}{f(i)}$$

where $f(i)$ is the background frequency of i.

From this, we obtain, a position specific scoring matrix

$$S[i, j] = \log_2 P[i, j]$$
Scoring a potential new instance of the pattern:

Given a sequence \(t \), a window of length \(w \) starting at position \(L \) is scored as follows:

\[
S[t, L] = \sum_{j=0}^{w-L} S[t[j + L], j]
\]

Sequence \(t \):

ATGTTGACCGTGCGATTTCGGCAAGCGAAACTATGTTCGACGACGCAAGATAAAACTATGCTGCGTTTCACGTTTAACTCTTT

A PSSM can be considered is a log odds scoring matrix

Note that the score of a window of length \(w \) at position \(L \) in \(t \), is a log likelihood ratio of the form

\[
S[t, L] = \log_2 \frac{P[data | H_a]}{P[data | H_0]}
\]

where the \(data \) is the subsequence at \(L \), \(H_a \) is the alternate hypothesis that \(t \) contains the pattern and \(H_0 \) is the null hypothesis (no pattern)
Amino acid background frequencies

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>D</td>
<td>0.052</td>
</tr>
<tr>
<td>E</td>
<td>0.062</td>
</tr>
<tr>
<td>H</td>
<td>0.023</td>
</tr>
<tr>
<td>I</td>
<td>0.053</td>
</tr>
<tr>
<td>Q</td>
<td>0.041</td>
</tr>
<tr>
<td>R</td>
<td>0.051</td>
</tr>
<tr>
<td>W</td>
<td>0.014</td>
</tr>
</tbody>
</table>

Pseudocounts

Example:

\[F[i, j] = \frac{n_i + b}{k + |\Sigma|} \]

The pseudocount, \(b \), avoids the problem of zero entries in the frequency matrix (and negative infinity in the log odds scoring matrix.)

Frequently, \(b = 1 \), is chosen.

Also, see Durbin, 5.6