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Abstract
Register allocation is a fundamental part of any optimiz-
ing compiler. Effectively managing the limited register re-
sources of the constrained architectures commonly found in
embedded systems is essential in order to maximize code
quality. In this paper we deconstruct the register allocation
problem into distinct components: coalescing, spilling, move
insertion, and assignment. Using an optimal register alloca-
tion framework, we empirically evaluate the importance of
each of the components, the impact of component integra-
tion, and the effectiveness of existing heuristics. We evalu-
ate code quality both in terms of code performance and code
size and consider four distinct instruction set architectures:
ARM, Thumb, x86, and x86-64. The results of our investiga-
tion reveal general principles for register allocation design.

Categories and Subject Descriptors D.3.4 [Programming
Languages]: Processors—Code generation, Compilers, Op-
timization

General Terms Algorithm, Design, Languages, Perfor-
mance

Keywords Register Allocation

1. Introduction
Register allocation is a critical part of any optimizing com-
piler. The register allocator is responsible for finding a de-
sirable assignment of program variables to hardware regis-
ters and memory locations. The quality of register allocation
has a substantial impact upon final code quality, both when
optimizing for performance and when optimizing for code
size. When optimizing for performance, an effective register
allocation minimizes memory traffic and decreases the sen-
sitivity of a program to the processor-memory gap. When
optimizing for code size, an effective register allocation min-
imizes the amount of overhead introduced by effectively us-
ing addressing modes and managing data movement instruc-
tions. Despite decades of study, register allocation remains a
complex and challenging problem for which no completely
satisfactory solutions exist.

In this paper we deconstruct the register allocation prob-
lem. We decompose the register allocation problem into dis-
tinct components: coalescing, spilling, move insertion, and

assignment. The coalescing component of register allocation
attempts to eliminate existing move instructions by allocat-
ing the operands of the move instruction to identical loca-
tions. The spilling component attempts to minimize the im-
pact of accessing variables in memory. The move insertion
component attempts to insert move instructions, splitting the
live ranges of variables, with the goal of achieving a net im-
provement in code quality by improving the results of the
other components. The assignment component assigns those
program variables that aren’t in memory to specific hard-
ware registers. Existing register allocators take different ap-
proaches in solving these various components. For example,
the central focus of a graph-coloring based register allocator
is to solve the assignment problem, while the spilling and
coalescing components are integrated as extensions to this
assignment-focused model.

In this paper we use an optimal register allocation frame-
work to study each component of register allocation. We
evaluate both the individual impact of each component and
the synergistic impact of fully integrating components upon
code quality. We consider both code performance and code
size metrics of code quality and target four distinct instruc-
tion set architectures: ARM, Thumb, x86, and x86-64.

What is the greatest benefit that can be realized by de-
veloping a fully integrated allocation algorithm? Conversely,
what is the maximum penalty incurred if the register alloca-
tion problem is decomposed into (hopefully) easier to solve
subproblems? What is the individual impact of each com-
ponent of register allocation on code quality? How far from
optimal are existing heuristics and where are the most fruit-
ful areas for researchers to focus their attention? The goal
of this study is to answer these questions and derive general
principles for register allocation design.

The main contributions of this paper are:

• The first comprehensive empirical investigation of the
importance, impact, and interaction of the various com-
ponents of register allocation.

• A set of design principles extrapolated from this investi-
gation useful in guiding the construction of future register
allocators.



In the next section we further describe the register allo-
cation problem and describe previous work. In Section 3 we
describe the optimal register allocation framework we use.
Section 4 contains the methodology we use to perform our
study. In Section 5 we present and analyze the results of our
investigation, and in Section 6 we extrapolate several gen-
eral guidelines of register allocation design from the results
of our study.

2. Background
Register allocation is an extensively studied problem. Graph-
coloring based algorithms are the dominant technique for
performing global register allocation. These approaches con-
struct an interference graph and attempt to find a coloring of
the graph where the colors correspond to registers [6, 9].
The basic graph-coloring algorithm has been extended in
attempts to integrate additional components of register allo-
cation, such as spill code generation [2, 3, 7], move insertion
[10], and coalescing [7, 9, 12, 24]. However, at its core the
graph-coloring approach is focused on solving the register
assignment problem and treats the spilling problem as a sec-
ondary concern.

Linear scan allocators [25, 26, 29, 30] are an alternative to
graph-coloring approaches. Linear scan allocators were orig-
inally developed for dynamic and just-in-time compilation.
Initial linear scan allocators were extremely fast and scal-
able, but produced low quality code. Recently, the extended
linear scan algorithm [26] has been shown to produce higher
quality code than a graph-coloring allocator while maintain-
ing the scalability advantages of linear scan algorithms.

Most register allocation algorithms attempt to integrate
the various components (move insertion, coalescing, spill
code generation, and register assignment) of register allo-
cation into a single algorithm. However, several approaches
separate spill code generation and register assignment [1, 22,
26]. In particular, Appel and George [1] use an integer lin-
ear programming (ILP) formulation to solve the spill code
optimization problem and then use heuristics to find a valid
assignment. Their framework views assignment as a coalesc-
ing problem. Parallel move instructions are inserted at every
program point making the assignment problem trivial; the
challenge becomes eliminating as many move instructions as
possible by assigning the operands of the move to the same
register.

It has been shown that inserting moves at every program
point is unnecessary; it is sufficient that the program be in
SSA form and the assignment problem becomes polynomial
[5, 8, 15, 23]. Additional work has embraced the coalescing
view of register assignment [4, 13, 16, 31, 32]. These ap-
proaches perform spill code generation as a separate phase,
insert sufficient moves to render the assignment problem
trivial (or expect the code to be in SSA form), and then
attempt to remove as many move instructions as possible.
Although these approaches primarily use coalescing algo-

rithms, the general problem they are solving is the register
assignment problem. In this paper we distinguish between
the register assignment problem, which may generate move
instructions, and the coalescing problem, which removes ex-
isting move instructions. We view coalescing based register
assignment techniques as an integration of these two com-
ponents.

Several register allocators that solve all or part of the reg-
ister allocation problem optimally have been implemented.
Optimal techniques, primarily based on ILP representations,
have been presented that solve the register allocation prob-
lem in its entirety [11, 20], the spill code optimization prob-
lem [1], and the integrated assignment-coalescing problem
[1, 13]. However, no study has used an optimal register allo-
cation framework to thoroughly analyze the individual and
collective impact of the various components of register allo-
cation.

3. Optimal Register Allocation Framework
The heart of our investigation of register allocation is an
optimal register allocation framework derived from [19].
This framework models the register allocation problem using
multi-commodity network flow (MCNF) and exactly repre-
sents the spill code optimization, move insertion, and regis-
ter assignment components of register allocation. We extend
the model to exactly represent the coalescing component by
adding side constraints. These side constraints, which do not
fit directly into the network flow formulation, model the ben-
efit of allocating the two operands of a move instruction to
the same location. We formulate the resulting model of reg-
ister allocation using an integer linear programming (ILP)
model. The ILP is then solved using ILOG CPLEX 10.0
[17]. It is important to note that this optimal register allo-
cation framework is not practical for production use; finding
an optimal solution for a single allocation problem can take
as long as several days. However, because the results are op-
timal, this framework is an ideal tool for investigating the
essential features of register allocation.

We consider a register allocation to be optimal if, for a
given code quality metric, the allocation has the best code
quality that is achievable by assigning registers and inserting
loads, stores, and moves into a given instruction stream. Our
model is essentially optimal, but there are a few minor limi-
tations. One such limitation is an implicit assumption that it
is never beneficial for the same value to be in two different
registers at the same program point. For architectures with
uniform register sets, this assumption holds as long as copy
propagation has been applied to the code. In addition, we do
not consider the impact of increasing the size of the stack
(to hold spilled values) on code quality. Finally, note that we
consider instruction scheduling to be beyond the scope of the
register allocator and do not reorder instructions.

Our model correctly models the persistence of a value in
memory. That is, a value need only be stored to memory
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Register Allocation Components

Move Insertion Coalescing Spilling Assignment

full: move instructions may
be inserted at any program
point

integrated optimal: the bene-
fits of move coalescing are ex-
actly represented as part of an
ILP model of register allocation

integrated optimal: the
costs of spill code generation
are exactly represented as
part of an ILP model of
register allocation

integrated optimal: the
costs of register assignment
are exactly represented as
part of an ILP model of
register allocation

limited: move instructions
may be inserted only at the
entry and exit of basic blocks

integrated optimal ignoring
uncoalescable: the benefits of
coalescing only those move in-
structions that can be identified
as coalescable prior to register
allocation are incorporated into
the ILP model

separate optimal: the spill
code generation problem (re-
ducing max liveness to meet
register availability) is solved
optimally as a standalone
problem

graph heuristic: a graph-
coloring based heuristic is
used to assign registers to the
results of spill code genera-
tion; move instructions may
be inserted to improve col-
orability

none: no register-to-register
move instructions are gener-
ated by the allocator

separate optimal: an ILP model
is used to eliminate the max-
imum number of coalescable
moves prior to register allocation

separate heuristic: the spill
code generation problem is
solved as a standalone prob-
lem using a heuristic algo-
rithm

linear scan heuristic: a lin-
ear scan based heuristic is
used to assign register to the
results of spill code genera-
tion; move instructions may
be inserted to improve col-
orability

separate aggressive: a greedy
heuristic aggressively eliminates
coalescable moves prior to regis-
ter allocation
none: no coalescing is per-
formed

Table 1. The components of register allocation and the various configurations evaluated in this study.

once with no cost incurred by future evictions. Our model
takes a very fine-grained view of spilling; this is not a “spill-
everywhere” approach. In our full model we allow moves be-
tween registers at every program point. In order to simplify
the model, we only permit load and store instructions to be
inserted at basic block boundaries and before/after instruc-
tions that use/define the corresponding variable. This sim-
plification does not effect the optimality of the result. Con-
stant values may be rematerialized instead of being spilled
to memory.

We consider two code quality metrics: code size and code
performance. Optimizing for code size is straightforward as
the immediate impact of any transformation can be exactly
determined at compile time. The complex nature of mod-
ern architectures makes an exact metric for performance
unattainable. Instead we model code performance using a
weighted sum of loads, stores, and move instructions where
instructions that are judged to execute more frequently have
a proportionally higher weight.

We use our full model of register allocation to find an
optimal allocation. This optimal allocation serves as a base-
line in our investigation of the importance of the different
components of register allocation. In order to perform our
investigation, it is necessary to modify the model so that we
can analyze each component separately as well as investigate

the impact of integrating different components. We consider
four distinct components of register allocation: move inser-
tion, coalescing, spilling, and assignment.

Next, we describe how we modify the model to inves-
tigate the various configurations of these four components
(Table 1).

3.1 Move Insertion
Inserting move instructions during register allocation is typ-
ically done to split the live range of a variable in order to
avoid spilling the variable, to take advantage of some regis-
ter preference, or to make the assignment problem easier. As
an entirely separate phase, move insertion is pointless since
inserting moves can only increase code size and decrease
performance. Instead, the nature of move insertion necessi-
tates that it be integrated with at least a register assignment
phase. Therefore we do not attempt to analyze the separabil-
ity of move insertion. Instead we consider the impact move
insertion has on code quality by both disabling and limiting
the ability of our full model to insert moves. With move in-
sertion disabled in the full model, the optimal allocator never
generates register to register moves. If a variable is defined
or loaded into a register, it stays in that register until the vari-
able is no longer live or the variable is evicted to memory. As
a middle ground between full move insertion (where register
to register moves can be inserted at any program point) and



no move insertion we also evaluate limiting move insertion
to basic block boundaries. That is, the register allocator will
only generate register to register moves at the entry and exits
of basic blocks.

3.2 Optimal Coalescing
Move coalescing occurs when the register allocator can allo-
cate the source and destination operand of an existing move
instruction to the same location, resulting in the elimination
of the move instruction. As a separate phase, the coalesc-
ing problem is to eliminate as many coalescable moves as
possible. A move is coalescable if the source operand does
not interfere with the destination operand. For instance, the
source operand cannot be live after the instruction. When
performed independently from register assignment, move
coalescing merges the live ranges of the two operands of the
move instruction into a single new variable.

There are three apparent disadvantages to performing co-
alescing as a separate pass prior to assignment. The first
is that overly aggressive coalescing may make the register
assignment problem harder. However, if the assigner effec-
tively utilizes move insertion, this drawback can be over-
come. The second disadvantage of decoupling coalescing
from the rest of the allocator is the inability to remove un-
coalescable moves. For example, in the context of the full
register allocation problem, it may be possible to remove a
move instruction where the source is live after the instruc-
tion if the source value is available in memory. In this case,
future users of the source operand value will have to first
load the value from memory. Finally, standalone coalescing
cannot eliminate move instructions where one operand is a
preallocated machine register; these move instructions must
be removed by the register assignment phase.

In order to investigate the impact of coalescing on regis-
ter allocation, we formulate the standalone coalescing prob-
lem as an ILP using a graph-coloring representation similar
to [12] where we do not restrict the number of colors. This
pass identifies the maximum number of coalescable move
instructions and then removes these instructions by assign-
ing the operands to identical virtual registers. The resulting
instruction stream is passed to a version of our full model
that is missing the side constraints that represent the benefits
of coalescing. In addition, in order to evaluate the benefit of
an integrated allocator being able to remove uncoalescable
moves, we consider a version of the full model where coa-
lescing side constraints are only added for those moves that
are coalescable.

3.3 Optimal Spilling
Optimal spill code generation minimizes the impact of mem-
ory accesses generated by the register allocator on code qual-
ity. The goal of spill code generation when run as a sepa-
rate standalone pass is to legally modify the input instruction
stream so that at every program point sufficient registers are
available to hold all allocable live variables. The spill code

generator reduces the number of allocable variables at a pro-
gram point by spilling (moving to memory) a variable over
some range of program points. The result of spill code gen-
eration is provably assignable [16] as long as the assigner is
capable of inserting move and swap instructions.

In order to represent the standalone optimal spilling prob-
lem we use a simplified version of our full model. In the
MCNF based model of register allocation used in the full
model, each variable is a flow through a network of nodes
where each node represents memory or a specific register.
In order to represent the spilling problem, we simplify this
network so that instead of having a unit capacity node for
each register, we have a single node for each register class
with capacity equal to the class size. For example, if there
are eight integer registers, these will constitute a single reg-
ister class that is represented by a node with capacity eight.
The resulting model is substantially smaller and less com-
plex than the full model. It does not model register to reg-
ister moves or coalescing constraints and has considerably
fewer nodes and edges. We optimistically model register us-
age preferences. That is, if there is some benefit to allocating
a variable to a specific register at a program point, then in the
simplified model, that variable achieves the same benefit by
being allocated to the corresponding register class.

3.4 Optimal Assignment
Given the results of spill code generation, optimal register
assignment finds an assignment of registers to variables that
maximizes code quality. The assigner may have to insert
move or swap instructions in order to generate a legal assign-
ment. Since in our optimal framework we allow for only the
generation of move, load, and store instructions, we imple-
ment swaps using an additional memory location. The reg-
ister assigner maximizes code quality not only by minimiz-
ing the impact of inserted move and swap instructions, but
also by exploiting any register preferences. For example, if
a variable is moved into a hardware register, allocating that
variable to that hardware register will eliminate the corre-
sponding move instruction.

We implement optimal assignment as a standalone prob-
lem by constraining the full model to observe the results of
spill code generation. For example, if spill code generation
creates a load of a variable at a particular program point,
then in the constrained full model we force that variable to
be loaded by constraining the corresponding variables in the
ILP appropriately.

3.5 Heuristics
In addition to developing optimal algorithms for the com-
ponents of register allocation we have implemented several
heuristic algorithms within the parameters of our framework.
We have implemented an aggressive coalescer that simply
considers all coalescable move instructions in program order
and greedily coalesces. Our heuristic spiller is an implemen-
tation of the heuristic solver of [19] applied to the simplified,



spill code optimization, version of the MCNF based model.
We also use this heuristic solver to solve the full model (ig-
noring side constraints).

We implement two assignment heuristics to represent the
two most prevalent approaches: a linear scan based algo-
rithm similar to [26] and an algorithm that uses graph sim-
plification [9] to find an initial partial assignment that is fi-
nalized with a move insertion pass. Note that the assignment
heuristics assume that spill code generation has been per-
formed (the maximum number of live variables does not ex-
ceed the number of available registers at any point). There-
fore, the assignment heuristics do not insert any spill code
to reduce register pressure. However, move or swap instruc-
tions may have to be inserted at basic block boundaries in or-
der to find a valid assignment. In our implementation, swap
instructions are implemented using a temporary memory lo-
cation. Both heuristics attempt to exploit register preferences
by assigning a variable its preferred register if it is available.

4. Methodology
We have implemented our optimal register allocation frame-
work within the LLVM 2.4 [21] compiler infrastructure. We
target four distinct instruction set architectures:

• x86 The venerable Intel x86 32-bit instruction set [18]
has variable length instructions, supports direct access to
memory in most instructions, and has a limited register
set (8 integer, 8 floating point). We consider this ISA to be
representative of CISC architectures with limited register
resources.

• x86-64 The Intel x86 64-bit instruction set [18] also
has variable length instructions and support for memory
operands, but has an extended register set (16 integer, 16
floating point). We consider this ISA to be representative
of CISC architectures with sufficient register resources.

• ARM The ARM instruction set [27] has four-byte RISC-
like instructions and supports 16 integer registers. We tar-
get an ARMv6 core with software floating point. We con-
sider this ISA to be representative of RISC architectures
with sufficient register resources.

• Thumb The Thumb instruction set [27] is an alternative
instruction set for ARM processors optimized for code
size. It has two-byte RISC-like instructions and can only
efficiently access 8 integer registers. For our investiga-
tion we restrict the allocator to only allocate to these 8
efficiently accessed registers to make the Thumb target
representative of architectures with limited register sets.
We target an ARMv6 core and do not generate Thumb-2
instructions. We consider this ISA to be representative of
RISC architectures with limited register resources.

We believe that these four architectures, in addition to
constituting a substantial portion of market share in the desk-
top, server, and embedded spaces, are also generally repre-

sentative of most existing architectures. Our observations on
the impact of register allocation on code size and perfor-
mance can therefore be readily extrapolated to similar ar-
chitectures.

4.1 Code Size Evaluation
The immediate impact of register allocation on code size is
straightforward to measure since the compiler can exactly
calculate the size of a function. Since we are concerned
with the direct impact register allocation has on code size
and wish to avoid any potential noise from downstream
optimizations, all reported code size results reference the
code size immediately after performing register allocation.
We only report the size of executable code; constants and
other data are ignored.

Since code size is principally of interest to the embed-
ded community, we use MiBench [14], a commercially
representative embedded benchmark suite in our evalua-
tions. We omit five of the 20 benchmarks (mad, tiff, sphinx,
ghostscript, and ispell) due to dependencies on libraries not
available on our non-native ARM and Thumb targets.

In order to generate results in a reasonable timeframe, we
impose a time limit of 10 minutes per a function upon the
CPLEX solver. In comparing allocators, we consider only
those functions for which an optimal solution is found for
all allocator configurations and architectures under consid-
eration. The imposition of a time limit introduces a self-
selecting bias to our results. However, we find that this time
limit is sufficient to select more than 70% of the functions
in the considered benchmarks. Furthermore, we observed no
significant qualitative change in results as we increased the
time limit.

In reporting code size results we compare the total code
size over all functions relative to the fully optimal result.
That is, a result ratio of one is the best possible result and
larger ratios represent a code size increase.

4.2 Performance Evaluation
Code performance is the predominant code quality metric
in the desktop and server spaces. We evaluate code per-
formance on the highly relevant x86 and x86-64 targets.
We run our performance experiments on an Intel Core 2
Quad (Q6600) processor running at 2.4GHz with 4GB of
main memory. We evaluate performance using a subset of
the SPEC2006 [28] benchmark suite. Unfortunately, it isn’t
feasible to solve every function of every benchmark to opti-
mality. In order to make the evaluation practical we consider
only those C/C++ benchmarks where, based on profile data,
85% of the execution time is spent in 10 or fewer functions.
When compiling these benchmarks we find an optimal reg-
ister allocation only for these key functions. We further limit
the number of benchmarks by only considering those bench-
marks where an optimal solution could be obtained for every
key function for all configurations of the allocator within a
time limit of 1000 minutes. These selection criteria result



in a subset of six benchmarks for x86 (429.mcf, 433.milc,
462.libquantum, 470.lbm, 473.astar, and 482.sphinx) and
four benchmarks for x86-64 (433.milc, 462.libquantum,
473.astar, and 482.sphinx). Note that since different bench-
mark sets are used for the two architectures, they are not
directly comparable.

When optimizing for performance, our register allocation
model requires some estimate of the execution frequencies
of every basic block. We extract exact execution frequencies
from a profile run of the train data set and use these exact
frequencies within the model. Since we are interested in
finding an optimal allocation, we eliminate any noise from
differences in data sets by also using the train data set to
compute our performance numbers.

In reporting code performance results, unless stated oth-
erwise, we compare a geometric mean across the selected
benchmarks of the execution time increase relative to the
fully optimal model. Since the fully optimal result is only
optimal with respect to a weighted sum of executed loads,
stores, and moves, the result is not necessarily optimal with
respect to all aspects of processor performance. Further-
more, post-allocation optimizations may add noise. As a re-
sult, it is possible to observe a performance ratio less than
one, indicating a performance improvement relative to the
optimal allocation. In addition to reporting execution time,
we use performance counters to collect dynamic load, store,
and instruction counts. These counts are representative of the
simple code performance metric used by our optimal model.
Indeed, there are cases where the optimal solution according
to our performance metric does not yield the fastest code,
implying there are important aspects of processor perfor-
mance that are not captured by our metric.

5. Analysis
In this section we use our optimal allocation framework to
empirically evaluate the importance and impact of the vari-
ous components of register allocation. We investigate the im-
pact of solving these components separately, but optimally,
examine the individual contribution of each component to
the overall code quality, and evaluate the performance of
heuristics relative to an optimal allocator.

5.1 Move Insertion
Code size and performance results for two different move
insertion strategies are shown in Figure 1. In both cases, any
pre-existing move instructions are aggressively coalesced
prior to register allocation. That is, the allocator cannot sim-
ply split a live range by choosing not to coalesce; a move
must be inserted. Surprisingly, disabling move insertion al-
together, which should necessitate the introduction of addi-
tional spill code, has only a marginal impact on code qual-
ity. Code size grows by less than 0.25% on all targets. The
limited move insertion strategy, which only allows move
instructions to be inserted by the allocator at basic block

boundaries, performs even better demonstrating miniscule or
nonexistent increases in code size.

Both strategies result in essentially equal performance
compared to the optimal allocator. Disabling move inser-
tion does result in more memory operations, but these ex-
tra memory operations do not have any meaningful effect on
performance. In contrast, the limited move insertion strategy
is virtually indistinguishable from the optimal allocator.

Several register allocators utilize move insertion in order
to generate a better allocation [1, 19, 20] or to simplify
the assignment problem [13, 16, 31, 32]. The results of
our empirical study strongly suggest that supporting move
insertion has a surprisingly minimal impact on final code
quality and that supporting full move insertion, where move
instructions can be inserted at every program point, is not
necessary to achieve high quality code.

5.2 Coalescing
Code size and performance results for four different coalesc-
ing strategies are shown in Figure 2. After performing coa-
lescing using one of the shown strategies, both spill code op-
timization and register assignment are solved optimally as a
single integrated pass. As expected, not performing any coa-
lescing results in significant increases in code size as well as
significantly increasing the number of instructions executed
and degrading performance.

The three remaining coalescing strategies have remark-
ably little impact on code quality. Code size grows by less
than 0.15% on all targets and the difference in performance
is negligible. There is a small code size advantage of opti-
mal coalescing over aggressive coalescing, but in practice
the greedy heuristic aggressive coalescer usually eliminates
the same number of move instructions as the optimal coa-
lescer. When the fully integrated optimal allocator is con-
figured to ignore any potential benefit from eliminating un-
coalescable move instructions (that may become coalesca-
ble with the introduction of spill code), a small code size
increase is observed. In all cases, the integrated coalescer
slightly improves upon the optimal allocator implying that
the decision of which move instructions are coalesced, not
just the number of coalesced move instructions, can influ-
ence the final code quality.

These results suggest that, when viewed as a move elim-
ination problem distinct from register assignment, coalesc-
ing can be effectively implemented as a separate pass using
a simple greedy heuristic. However, when code size is of
paramount importance and the target is register limited, im-
proving coalescing and integrating coalescing into the spill
code optimizer may yield a small improvement.

5.3 Spilling
The impact on code size and performance of both optimal
and heuristic spill code optimization performed as a separate
pass is shown in Figure 3. After executing the spill code op-
timization pass, coalescing and register assignment are per-
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Figure 1. The impact of move insertion on code quality when targeting code size (a) and code performance (b). Taller bars
indicate larger/slower code. Error bars are shown for execution time measurements.
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Figure 2. The impact of coalescing on code quality when targeting code size (a) and code performance (b). Taller bars indicate
larger/slower code. Error bars are shown for execution time measurements.

!"

!#$$%"

!#$!"

!#$!%"

!#$&"

!#$&%"

!#$'"

()*" ()*+*," -./" 01234"

!
"
#
$
%&
'(
$
%)
$
*+
,
-
$
%.
"
%/
0
,
1
+
*%

567898:6";7<38="57>==>?@" 567898:6"A629>B<C"57>==>?@"

(a)

!"#$%

&%

&"!$%

&"&%

&"&$%

&"'%

&"'$%

&"(%

&"($%

&")%

*
+,

-
%

./
0
1
2%

3
4/
5-
2%

67
24
58
9:
/
7
2%

*
+,

-
%

./
0
1
2%

3
4/
5-
2%

67
24
58
9:
/
7
2%

;<=% ;<=>=)%

!
"
#$
%
&
"
'(
)
'*
+
%
,
$
#'
-
##
)
.$
%
)
/
'

3-?0504-%@?:,0A%3?+AA+7B% 3-?0504-%C-85+2:9%3?+AA+7B%

(b)

Figure 3. The impact of spill code optimization on code quality when targeting code size (a) and code performance (b). Taller
bars indicate larger/slower code. Error bars are shown for execution time measurements.
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Figure 4. The impact of register assignment on code quality when targeting code size (a) and code performance (b). Taller
bars indicate larger/slower code. Error bars are shown for execution time measurements.
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Figure 5. The effectiveness of heuristic allocators when targeting code size (a) and code performance (b). Taller bars indicate
larger/slower code. Error bars are shown for execution time measurements.

formed as a single optimal pass. Particularly for the register
limited architectures, there is a definite degradation of code
quality when a heuristic spiller is used. The register limited
x86 architecture exhibits a 20% increase in dynamic memory
operations that results in a 7.5% increase in execution time.
Interestingly, although the number of dynamic memory op-
erations increases substantially on the x86-64 architecture,
this increase does not correspond to a significant increase in
execution time.

Performing spill code optimization separately, but opti-
mally, has no discernible impact on performance; however,
there are notable increases in code size, ranging from an in-
crease of 0.22% on x86 to 1.1% on Thumb.

These results suggest that, when optimizing for perfor-
mance, spill code optimization can be implemented as a sep-
arate pass without loss of code quality. However, when opti-

mizing for code size, spill code optimization is not so readily
decoupled from the rest of register allocation. When target-
ing architectures with sufficient register sets, a heuristic spill
code optimizer can approach the quality of an optimal opti-
mizer, but there remains room for improvement, particularly
when targeting register-limited architectures.

5.4 Assignment
Code size and performance results for three different assign-
ment algorithms are shown in Figure 4. Prior to assignment,
aggressive coalescing and optimal spill code generation are
performed. The optimal assigner does not explicitly opti-
mize for coalescing, but does explicitly optimize for reg-
ister preferences. Unsurprisingly, given the spilling results,
there does not seem to be any penalty for performing assign-
ment as a separate pass when optimizing for performance.



However, an increase in code size is observed. Both heuristic
assigners generate poorer quality code than the optimal as-
signer, but the graph-based assigner generates substantially
better code than the scan-based assigner.

The graph-based assigner was especially effective when
optimizing for performance. On the x86 architecture, the
graph assigner resulted in a small increase in the number of
memory operations and instructions executed, while on the
x86-64 architecture only a slight increase in the total num-
ber of instructions executed was observed. Memory opera-
tions are introduced by the assigner when a swap operation
is needed. The greater number of registers on the x86-64 ar-
chitecture apparently made such operations less necessary
and only simple move instructions were generated.

The graph-based assigner first uses graph simplification
to find a partial coloring of the interference graph. If any
variables remain uncolored after this pass then these vari-
ables are split into colorable live ranges. If the first pass
is successful at finding a color, no move or swap instruc-
tions are generated, otherwise move and swap instructions
are only generated for the uncolored variables. In practice,
the first pass often successfully colors the interference graph.
For example, on x86, more than 75% of the compiled func-
tions have their interference graph fully colored while more
than 90% of the functions end up with one or fewer uncol-
ored nodes. As a result, few move and swap instructions are
generated. Since swap instructions are implemented using
a temporary memory location in our framework, the graph-
based assigner is especially effective when optimizing for
performance.

The results of our empirical study suggest that there re-
mains ample room for improving assignment algorithms and
a poor register assignment can negatively impact perfor-
mance (especially if a register swap requires a memory ac-
cess). More advanced techniques such as graph recoloring
[16] may narrow the gap between heuristic and optimal so-
lutions. However, in order to achieve maximum code quality,
particularly when optimizing for code size, some integration
between the spill code optimizer and the assigner is neces-
sary.

5.5 Heuristic Comparison
Code size and performance results for three different purely
heuristic register allocators are shown in Figure 5. All three
heuristics first perform aggressive coalescing since coalesc-
ing has been shown to by highly separable and aggressive co-
alescing is very effective while being compile-time efficient.
We consider two heuristics that treat spill code optimization
and assignment separately. They both use the same heuris-
tic spill code optimizer, but use our two different assignment
algorithms. The third heuristic is an integrated heuristic that
attempts to solve the spill code optimization and assignment
problems simultaneously. Unsurprisingly, when optimizing
for code size the graph-based assigner outperforms the scan-
based assigner and both are outperformed by the integrated

heuristic. However, there remains a significant gap between
the optimal allocation and the best heuristic solution.

In all cases the heuristics increase the number of executed
memory operations and instructions. On the x86 architec-
ture, increases of execution time are also observed. Inter-
estingly, these increases do not translate into performance
degradations on the x86-64 architecture.

6. Conclusions
In this paper we have presented the first of its kind, compre-
hensive empirical investigation of the importance, impact,
and interaction of the various components of register alloca-
tion. Extrapolating from the results of our empirical study,
we conclude with a set of design principles useful in guiding
the construction of future register allocators and empirically
justifying the design of current allocators:

• The ability to insert moves (that is, split live ranges or
undo coalescing) has surprisingly little impact on code
quality. What benefit there is can primarily be obtained
by allowing move insertions only at basic block bound-
aries. Thus, register allocators need not be designed to ex-
plicitly optimize move insertions, although allowing in-
sertions may simplify the design of algorithms for other
components.

• Coalescing, when viewed as a move elimination problem
separate from register assignment, is highly separable: it
can be performed as a standalone pass without materially
degrading code quality. Furthermore, a simple greedy
heuristic is nearly as effective as an optimal algorithm.

• When optimizing for performance on a modern proces-
sor, spill code optimization is of paramount importance.
Furthermore, the various components of register alloca-
tion can be treated separately without significantly im-
pacting performance. Therefore, when targeting proces-
sor performance, new register allocator designs should
focus on solving the spill code optimization problem as
the coalescing, move insertion, and register assignment
problems are adequately solved using existing heuristics.

• Both spill code optimization and register assignment are
important contributors when optimizing for code size.
If code size is of paramount importance, then integrat-
ing these two phases can result in an additional small
improvement. Therefore, when targeting code size, new
register allocator designs should focus on solving both
the spill code optimization and register assignment prob-
lems, possibly in an integrated framework.
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