
Visual Proxy: Exploiting OS Customizations without
Application Source Code

M. Satyanarayanan, Jason Flinn, Kevin R. Walker
School of Computer Science
Carnegie Mellon University

1. Introduction

Performance and functionality enhancements are
often made available to applications through extensions
to an operating system’s API. Recent examples include
API extensions for search latency reduction [13],
application-specific conflict resolution [5],
mobility [4, 9], informed prefetching [10], consistency
management [14], and low-overhead transactions [7].
Unfortunately, source code to some of the most popular
and important applications is often not available under
acceptable licensing terms. How then can such
applications benefit from the new performance or
functionality enhancements?

In this paper, we describe a solution to this problem
that appears promising for a broad class of interactive
applications that rely on graphical user interfaces
(GUIs). We call our solution a visual proxy: "proxy"
because it involves redirection through an interposing
layer of code; and "visual" because this proxy is located
at the front end of a GUI-based application and
modifies its visual appearance.

The concept of a proxy is a well-established idea in
Web browsers [8]. Visual proxies differ from Web
proxies in two important ways. First, Web proxies have
historically been used to extend the back-end of
browsers. In contrast, visual proxies augment the front-
end of an application and enable extensions that may
not be feasible at the back-end. Second, Web proxies
are easy to implement because browsers already
provide for their existence — interposing a Web proxy
merely involves specifying its IP address to a browser.
In contrast, visual proxies are more difficult to
implement because current GUI-based applications are
not written with them in mind. Another approach that

This research was supported by the Air Force Materiel Command
(AFMC) and DARPA under contract number F19628-96-C-0061.
Additional support was provided by the Intel Corporation and the
Novell Corporation. The views and conclusions contained here are
those of the authors and should not be interpreted as necessarily
representing the official policies or endorsements, either express or
implied, of AFMC, DARPA, Intel, Novell, Carnegie Mellon or the
U.S. Government.

bears a modicum of resemblance to the visual proxy
idea is the use of an interposition toolkit to extend an
operating system interface [3]. However, as in the case
of Web proxies, interposition agents based on such a
toolkit only extend the back-end of applications.

We describe our technique in more detail in the next
section. Although we are still early in our exploration
of the visual proxy approach, we have evidence of its
viability for two quite different applications. Section 3
describes our use of the technique in Netscape [2], and
Section 4 describes its use in FrameMaker [1]. We
conclude in Section 5 with a discussion of future work.

2. Implementing Visual Proxies

Two key insights provide the foundation for the visual
proxy idea. First, applications such as Web browsers,
word processors, and spreadsheets reflect much of their
internal state in the GUI. Second, such applications
modify GUI state only by communicating with their
windowing system through a narrow, well-defined
channel. A proxy interposed in this channel can snoop
on changes to the GUI and mirror the application’s
internal state. This mirrored state allows the proxy to
correctly determine when and how to invoke system
API extensions on behalf of the application. Of course,
it is neither possible nor necessary to precisely mirror
the entire state of an application in its proxy. Only
those components of the state relevant to the API
extensions being exploited need to be mirrored.

Extending an application requires the proxy to
address several complex issues. First, the proxy must
determine how to monitor changes to the user interface
without significantly degrading application
performance. Second, the proxy must modify the
behavior of the application to ensure that it benefits
from the API extensions. Finally, the proxy must
augment the GUI to reflect information from both the
application and the extended API.

Figure 1 shows the key components and interactions
in the implementation of a visual proxy. Our initial

2

Figure 1: Visual Proxy Architecture

realization of this concept is in the context of X
Windows [11]. Applications communicate with the X
sever through a socket-based channel, using a well-
defined windowing protocol. Redirecting the entire
traffic stream through a proxy, though simple, would
have a significant detrimental effect on performance.
Therefore, the proxy takes a minimalist approach,
monitoring only key messages that reveal important
information about application state. The vast majority
of events are sent directly to the application without the
intervention of the proxy.

By monitoring these events, the proxy can correctly
invoke system API extensions on behalf of the
application. To ensure that the application benefits
from these invocations, the proxy often needs to alter
the behavior of the application. This is made possible
by the proxy’s position in the channel between the
application and the windowing system. Since the proxy
can generate synthetic window events simulating user
input, it has access to all functionality available through
the GUI and can thus stimulate the desired internal state
changes in the application. By manipulating both
visual appearance and internal application state, a visual
proxy provides a powerful technique for augmenting
application behavior.

Often, enhancing an application to make use of an
extended system API increases the range of interactions
and information available to the end-user. However,
the application’s existing user interface, designed
without knowledge of the new system extensions, is
typically insufficient to express such capabilities.
Therefore, the GUI needs to be extended. A visual
proxy first creates a separate GUI with widgets
reflecting the additional capabilities provided by the
API extension. The proxy then seamlessly integrates

this interface with the application using a technique
called reparenting. In this well-known window
management technique, the application’s original
interface is inserted as a child window inside the
extended interface, in much the same way that a
window manager adds decorations such as title bars to
an application window. The visual effect is that of
combining the application’s interface with one
reflecting the new capabilities provided by the system
API extension.

3. Dynamic Sets in Netscape

The dynamic sets API [12] extends the interface of a
distributed file system by allowing applications to
create unordered collections of the objects they intend
to access. A subset of this API is shown in Figure 2.
As an application iterates through the members of a
dynamic set, the system takes advantage of non-
determinism and asynchrony to reduce aggregate I/O
latency. Use of dynamic sets in a modified version of
NCSA Mosaic 2.6, a source-available browser, has
been shown to reduce the latency of Web searches by
up to 90% [13].

setOpen creates a new set

setClose terminates use of a set

setIterate non-deterministically yields a new
set member

setDigest returns a summary of the set

The above calls represent the most important elements of the
dynamic sets API. Calls that are infrequently used are
omitted for brevity.

Figure 2: Dynamic Sets API

We were curious to see if the benefits of dynamic sets
could be made available to Netscape Navigator, a
widely-used proprietary browser for which source code
was not available1. Integrating dynamic sets into
Netscape was the original motivation for the
development of the visual proxy concept.

Figure 3 shows how a visual proxy extends the
Netscape GUI. The proxy inserts an additional menu-
bar above the existing Netscape menu-bar, granting the
user the ability to directly invoke dynamic sets actions.
The proxy also displays a set dialog box representing

1Although source code to Netscape is now publicly available, we
did not have access to it when we did the work described here.

3

(a) Original GUI

(b) Extended GUI

This figure illustrates how we have extended Netscape with a
visual proxy to exploit dynamic sets. Part (a) shows the
result of a normal Web search using the AltaVista search
engine. Part (b) shows the corresponding result when the
output of the search is treated as a dynamic set. Three
components of part (b) are generated by a visual proxy: the
menu-bar with buttons labelled "Set", "Actions", etc.; the
dialog box labelled "Open Set Window"; and the message at
the bottom saying "The iterator has been reinitialized".

Figure 3: Extending Netscape to Use Dynamic Sets

the dynamic set that contains the pages returned by a
search engine. Finally, the proxy uses the window in
the bottom left corner of the Netscape GUI to display
transient information about the set. Because Netscape
displays transient information such as the status of
loading the current page in this window, the proxy’s use
of the window for similar tasks helps to transparently
blend the GUIs of Netscape and the dynamic sets
extension.

Although the menu-bar provides a convenient way to
access the dynamic sets API, the utility of a browser
interface lies in hypertext-based point-and-click
navigation. Therefore, we also extended Netscape’s
interface to include the ability to create new sets by
clicking on a hypertext link. For instance, a mouse
click on a hypertext link with the control key pressed
opens a dynamic set whose members are the sub-pages
referenced by the specified link. The I/O latency of
iterating through this set can be much smaller than if
each page were accessed through the normal hypertext
interface.

The following example illustrates how one might use
the Netscape visual proxy. When started by the user,
the proxy locates all Netscape windows currently being
displayed and extends them by adding the dynamic sets
menu bar shown in Figure 3. To provide a smooth
transition, the proxy reparents the Netscape window
into one with identical size and location. When the user
moves or resizes the parent window, the proxy ensures
that the Netscape window is appropriately reconfigured.

Subsequently, the user searches for the latest baseball
news by entering parameters for a favorite search
engine and clicking on a link while pressing the control
key. When the proxy intercepts the window event
corresponding to the click, it deduces from the control
key state that the event is sets-related. The proxy
passes the event through to Netscape and monitors the
result. Since the event causes Netscape to load a new
page, the proxy calls setOpen() to create the
dynamic set which will contain the results of the search.
The proxy also creates a set dialog box which allows
the user to navigate through the set. The user iterates
through the set by clicking the Iterate button in the set
dialog box. On each click, the proxy calls
setIterate() which returns the name of a page that
has been prefetched by the system. The proxy causes
the browser to load this page using the Netscape
remote-control interface; alternatively, it could cause
the same action by sending window events to Netscape.
When he has finished, the user clicks the Close button;
this causes the proxy to invoke setClose().

4

4. Application-Specific Resolution in
FrameMaker

An application-specific resolver (ASR) is an
important tool for handling update conflicts in an
optimistically-replicated file system such as
Coda [5, 6]. When connectivity is re-established after a
network failure, the replicas of a file that was updated
in multiple network partitions must be resolved to
create a single resultant version. By exploiting
application semantics unavailable at the level of the file
system API, ASRs can substantially simplify the
resolution of many update conflicts.

We are currently creating an interactive Coda ASR
for FrameMaker, a commercial word processor for
which we do not have source code. This ASR is
implemented as a visual proxy, as shown in Figure 4.

When a Coda client detects divergent replicas of a
FrameMaker document, it invokes the ASR shown in
Figure 4. This ASR consists of two components. The
first is FrameMaker, which contains the application-
specific knowledge necessary to detect and display
conflicting updates within the document. The second
component is a visual proxy, which extends the
FrameMaker GUI to allow the user to merge updates
and which invokes the Coda API to perform resolution.

Since the ASR is an extension of FrameMaker, the
user has access to full editing capabilities. The
extensions provided by the visual proxy are reflected in
new buttons in the FrameMaker GUI, as shown at the
bottom of Figure 4 (b). These buttons allow the user to
search for conflicts, accept modifications, and delete
modifications. In addition, the user may also perform
the reconciliation via a point-and-click interface. In a
manner similar to the Netscape proxy, the FrameMaker
proxy will intercept mouse events and either accept or
delete modifications if the user clicks on them in a
specific manner. For instance, if the user clicks on a
modification with the right mouse button, the proxy
will remove the modification from the document.

Tasks such as deleting text and searching for
modifications require the proxy to interact with
FrameMaker. Since these functions are available
through the word processor’s GUI, the proxy sends
artificial window events to FrameMaker to invoke the
desired behavior. When it sends such events, the proxy
sometimes manipulates the FrameMaker GUI to present
a more pleasing interface to the user. For example, the
proxy often prevents the display of pop-up windows
which might otherwise distract the user. In these cases,

(a) Original GUI

(b) Extended GUI

This figure illustrates how we have extended FrameMaker
with a visual proxy to provide an interactive ASR. As part
(a) shows, FrameMaker possesses the capability to highlight
the differences between two versions of a document. Part (b)
shows how this capability can extended through a visual
proxy to allow interactive resolution of conflicts. The
component of part (b) generated by a visual proxy is the row
of buttons at the bottom labelled "Next deleted", "Next
inserted", "Keep", "Remove" and "Cancel".

Figure 4: Extending FrameMaker

detailed knowledge of the application state allows the
proxy to achieve a more seamless interface.

5. Conclusion

The growing number of applications for which source
code is unavailable makes their integration with
operating system extensions an important challenge.
While much work lies ahead, our initial results give us

5

confidence that visual proxies have a major role to play
in addressing this challenge.

In the short term, we plan to integrate our
implementation of the FrameMaker visual proxy with
the Coda File System. We also plan to explore the
creation of visual proxies for a broader range of
applications, and to carefully evaluate their
performance overhead. A major task that awaits us is
the demonstration of the visual proxy concept in
Windows NT and Windows 95. In the long term, we
would like to evolve design guidelines for the
developers of applications and windowing systems to
better support visual proxies.

References
[1] Learning FrameMaker

Frame Technology Corporation, 1990.
Part Number 41-00522-00.

[2] James, P.
Official Netscape Navigator 3.0 Book.
Netscape Press, 1996.

[3] Jones, M.B.
Interposition Agents: Transparently Interposing User Code at

the System Interface.
In Proceedings of the 14th ACM Symposium on Operating

Systems Principles. Asheville, NC, December, 1993.

[4] Joseph, A.D., deLespinasse, A.F., Tauber, J.A, Gifford, D.K.,
Kaashoek, M.F.
Rover: A Toolkit for Mobile Information Access.
In Proceedings of the 15th ACM Symposium on Operating

Systems Principles. Copper Mountain, CO, December,
1995.

[5] Kumar, P. and Satyanarayanan, M.
Supporting Application-Specific Resolution in an

Optimistically Replicated File System.
In Proceedings of the 4th IEEE Workshop on Workstation

Operating Systems. Napa, CA, October, 1993.

[6] Kumar, P.
Mitigating the Effects of Optimistic Replication in a

Distributed File System.
PhD thesis, School of Computer Science, Carnegie Mellon

University, 1994.

[7] Lowell, D.E., Chen, P.M.
Free Transactions With Rio Vista.
In Proceedings of the 16th ACM Symposium on Operating

Systems Principles. St. Malo, France, October, 1997.

[8] Luotonen, A., Altis, K.
World-Wide Web Proxies.
Computer Networks and ISDN Systems 27, September, 1994.

[9] Noble, B.D., Satyanarayanan, M., Narayanan, D., Tilton, J.E.,
Flinn, J., Walker, K.R.
Agile, Application-Aware Adaptation for Mobility.
In Proceedings of the 16th ACM Symposium on Operating

Systems Principles. St. Malo, France, October, 1997.

[10] Patterson, R.H., Gibson, G.A., Ginting, E., Stodolsky, D.,
Zelenka, J.
Informed Prefetching and Caching.
In Proceedings of the 15th ACM Symposium on Operating

Systems Principles. Copper Mountain, CO, December,
1995.

[11] Quercia, V., O’Reilly, T.
X Window System User’s Guide.
O’Reilly & Associates, Inc., 1996.

[12] Steere, D.C.
Using Dynamic Sets to Reduce the Aggregate Latency of Data

Access.
PhD thesis, School of Computer Science, Carnegie Mellon

University, 1996.

[13] Steere, D.C.
Exploiting the Non-Determinism and Asynchrony of Set

Iterators to Reduce Aggregate File I/O Latency.
In Proceedings of the 16th ACM Symposium on Operating

Systems Principles. St. Malo, France, October, 1997.

[14] Terry, D.B., Theimer, M.M., Petersen, K., Demers, A.J.,
Spreitzer, M.J., Hauser, C.H.
Managing Update Conflicts in a Weakly Connected

Replicated Storage System.
In Proceedings of the 15th ACM Symposium on Operating

Systems Principles. Copper Mountain, CO, December,
1995.

