Catom Prototype 7
Goals

• Full catom orbiting
• Closed-loop control
• Basic ensemble motion

Major Features

• Electromagnets for locomotion
• Electronics to drive electromagnets
• Conductive rings for power sharing
• IrDA hardware for p-p communications
Coil Change

Old: 4.4mm ID
 7mm OD
New: 4.4mm ID
 8mm OD

33% less power for same excitation
18 g heavier

* (Shorter instead?)
cp7-md

• 12 drivers per board
 – one board per magnet layer
 – no interface board
• H-bridge has dual external supplies
 – High Voltage, Low DC to get catoms moving
 – Low Voltage, High DC to hold them together
• Basic protection logic (also lowers # pins)
• Constraint: LVP < HVP
cp7-ir

- 24 IrDA modules aligned with magnets
 - TxLED current resistor TBD
- IrDA lines into 2x 32:1 analog mux/demux
 - Can switch RX/TX ports independently
 - IrDA transceiver interfaces to UART
- Tri-state line buffers allow TX broadcast
cp7-pib

• Power rings TBD
 – based on Burak’s previous work
 – two per catom, one catom must be tethered

• Power regulation – VCC, HVP, LVP
 – At 3x, custom circuit will be worthwhile
 – Phase issues
 – Constraints on # of electromagnets active

• Power monitoring, V/I sense
Other design decisions

• Using Atmel AVRs
 – Bootloaders straightforward
 – Different chips based on need

• Single communications bus
 – Programming over bus via bootloaders
 – Bandwidth constraints a problem?

• Connectors likely barebones
 – Minimum count for power, communications
 – Lone pins
Other Design Decisions, 2

• Additional connectors on boards for initial programming
• Laser-cut shunt alignment plates
 – Instead of a single plastic piece
 – Reduce weight
 – Make assembly more accurate
Next Steps

• Power circuitry
• Build/test one-off circuit prototypes
• Power Rings
• Finalize/manufacture mechanical parts
• Board layout / assembly