Randomized Algorithms: Closest Pair of Points

Slides by Carl Kingsford

May 2, 2014

Based on Khuller and Matias
The problem

Problem. Given a set of points $S = \{p_1, \ldots, p_n\}$ in the plane find the pair of points $\{p_i, p_j\}$ that are closest together.
Estimate

Let $\delta(S)$ be the smallest distance in S. Suppose you had a good estimate b of $\delta(S)$ such that:

$$\frac{b}{3} \leq \delta(S) \leq b$$

Then you could find the closest points in $O(n)$ time as follows. Create a grid of boxes of side-length $= b$:

Compare each point to the points in its neighborhood.
Why $O(n)$?

The closest pair of points lie in each other’s neighborhood of the b-grid:

Each grid box contains ≤ 25 points:

Largest distance inside of a smaller grid point $= \frac{\sqrt{2}}{5} b < \frac{b}{3} \leq \delta(S)$.
Randomized approach to estimating b

While S is not empty:
1. Choose random point $x_i \in S$.
2. Compute $d(x_i) :=$ smallest distance from x_i to any other point currently in S.
3. For all points $x \in S$: If
 - far $d(x) > d(x_i) \rightarrow$ throw out x
 - close $d(x) \leq d(x_i)/3 \rightarrow$ keep x
 - medium $d(x) > d(x_i)/3$ but $d(x) \leq d(x_i) \rightarrow$ do what you want.

Return $b = d(x_i) = d(x^*)$ where $x^* :=$ the last x_i chosen before S became empty.
Implementing Step 3

Build a \(d(x_i)/3 \)-grid.

Step 3 Rule: A point \(x \) should be thrown out if it’s the only point in its neighborhood.

This will definitely throw out all points with \(d(x) > d(x_i) \):

\[
c = \frac{2d(x_i)\sqrt{2}}{3} < d(x_i)
\]
Step 3 Rule will definitely keep all points with $d(x) \leq d(x_i)/3$.

radius = $d(x_i) / 3$
\[b = d(x^*) \] is a good estimate for \(\delta(S) \)

We have \(d(x^*) = b \leq \delta(S) \) by definition.

Theorem. \(\delta(S) \geq b/3 \)

Proof. Let \((u, v)\) be the closest pair of points. Since \(S \) eventually becomes empty, \(u, v \) are deleted from \(S \) at some point. Suppose \(u \) was deleted first, and let \(j \) be the stage at which \(u \) was deleted. At that time:

- \[d(u) \geq d(x_j)/3 \] because otherwise \(u \) would have been kept.
- \[d(u) = \delta(S) \] because both \(u, v \) were in \(S \) at the start of stage \(j \).
- \[d(x_j) \geq d(x_i) \] because \(i > j \) and at stage \(j \) we removed all points with \(d(x) \geq d(x_j) \) [rule 3.1] so there are no points left with \(d(x) \geq d(x_j) \) from which \(x_i \) could have been selected.

So: \[d(u) = \delta(S) \geq d(x_j)/3 \geq d(x_i)/3 = b/3 \]
Proof: picture
Runtime Analysis

Let S_i be the set of points at stage i.

Let s_i be $|S_i|$.

Theorem. $\mathbb{E}[s_i] \leq \frac{n}{2^{i-1}}$

Proof. Assume true for i. Then:

$$\mathbb{E}[s_{i+1}] = \mathbb{E}[\mathbb{E}[s_{i+1}]] \leq \mathbb{E}[s_i/2] = \frac{1}{2}\mathbb{E}[s_i] \leq \frac{1}{2} \frac{n}{2^{i-1}} = \frac{n}{2^i}$$

Here $\mathbb{E}[s_i/2] \leq s_i/2$ because we chose x_i randomly. If you consider all the points, about half would have larger $d(x)$ and half would be smaller.
Runtime, 2

We then have that the total running time is

$$\mathbb{E} \left(\sum_{i=1}^{i^*} s_i \right) \leq \mathbb{E} \left(\sum_{i=1}^{n} s_i \right) = \sum_{i=1}^{n} \mathbb{E}[s_i] \leq \sum_{i=1}^{n} \frac{n}{2^{2i-1}} \leq 2n$$

where i^* is the number of stages, and the inequalities and equalities follow from linearity of expectation, the theorem above, and the sum of a geometric series.