CMSC 451: More NP-completeness Results

Slides By: Carl Kingsford

Department of Computer Science
University of Maryland, College Park

Based on Sect. 8.5,8.7,8.9 of Algorithm Design by Kleinberg & Tardos.
Three-Dimensional Matching
Recall ‘2-d matching’:

Given sets X and Y, each with n elements, and a set E of pairs $\{x, y\}$,

Question: is there a choice of pairs such that every element in $X \cup Y$ is paired with some other element?

Usually, we thought of *edges* instead of *pairs*: $\{x, y\}$, but they are really the same thing.
Three-Dimensional Matching

Given: Sets X, Y, Z, each of size n, and a set $T \subset X \times Y \times Z$ of order triplets.

Question: is there a set of n triplets in T such that each element is contained in exactly one triplet?
Theorem

Three-dimensional matching (aka 3DM) is NP-complete

Proof. 3DM is in NP: a collection of n sets that cover every element exactly once is a certificate that can be checked in polynomial time.

Reduction from 3-SAT. We show that:

$$3\text{-SAT} \leq_P 3\text{DM}$$

In other words, if we could solve 3DM, we could solve 3-SAT.
3-SAT \(\leq_P \) 3DM

3SAT instance: Let \(x_1, \ldots, x_n \) be \(n \) boolean variables, and \(C_1, \ldots, C_k \) clauses.

We create a **gadget** for each variable \(x_i \):

- \(A_i = \{a_{i1}, \ldots, a_{i,2k}\} \) **core**
- \(B_i = \{a_{i1}, \ldots, a_{i,2k}\} \) **tips**
- \(t_{ij} = (a_{ij}, a_{i,j+1}, b_{ij}) \) **TF triples**
Gadget Encodes True and False
Gadget Encodes True and False
Gadget Encodes True and False
How “choice” is encoded

• We can only either use the even or odd “wings” of the gadget.

• In other words, if we use the even wings, we leave the odd tips uncovered (and vice versa).

• Leaving the odd tips free for gadget i means setting x_i to false.

• Leaving the odd tips free for gadget i means setting x_i to true.
Need to encode constraints between the tips that ensure we satisfy all the clauses.

We create a **gadget** for each clause $C_j = \{t_1, t_2, t_3\}$

$$P_j = \{c_j, c'_j\} \quad \text{Clause core}$$

We will hook up these two clause core nodes with some **tip** nodes depending on whether the clause asks for a variable to be true or false.

See the next slide.
Add tuple \((c_1, c'_1, b_{i,2})\) if \(x_i\) in clause

Add tuple \((c_1, c'_1, b_{i,1})\) if \(\overline{x_i}\) in clause

\[C_1 = x_1 \lor \overline{x_3} \lor \overline{x_5}\]
Clause Gadgets

Since only clause tuples (brown) cover c_j, c'_j, we have to choose exactly one of them for every clause.

We can only choose a clause tuple (c_j, c'_j, b_{ij}) if we haven’t chosen a TF tuple that already covers b_{ij}.

Hence, we can satisfy (cover) the clause (c_j, c'_j) with the term represented by b_{ij} only if we “set” x_i to the appropriate value.

That’s the basic idea. Two technical points left...
Need to cover all the tips:

Even if we satisfy all the clauses, we might have extra tips left over. We add a clean up gadget \((q_i, q'_i, b)\) for every tip \(b\).

Can we partition the sets?

\[
X = \{a_{ij} : j \text{ even}\} \cup \{c_j\} \cup \{q_i\}
\]
\[
Y = \{a_{ij} : j \text{ odd}\} \cup \{c'_j\} \cup \{q'_i\}
\]
\[
Z = \{b_{ij}\}
\]

Every set we defined uses 1 element from each of \(X, Y, Z\).
If there is a satisfying assignment,

We choose the odd / even wings depending on whether we set a variable to **true** or **false**. At least 1 free tip for a term will be available to use to cover each clause gadget. We then use the clean up gadgets to cover all the rest of the tips.

If there is a 3D matching,

We can set variable x_i to **true** or **false** depending on whether it’s even or odd wings were chosen. Because $\{c_j, c'_j\}$ were covered, we must have correctly chosen one even/odd wing that will satisfy this clause.