Space-Efficient Alignment: Hirschberg’s Algorithm

02-713
Slides by Carl Kingsford
Space Usage

• $O(n^2)$ is pretty low space usage, but for a 10 Gb genome, you’d need a huge amount of memory.

• Can we use less space?

• Hirschberg’s algorithm
Remember the meaning of a cell

Best alignment between prefix x[1..5] and prefix y[1..5]
Linear Space for Alignment Scores

• If you are only interested in the cost or score of an alignment, you need to use only $O(n)$ space.

• How?
Linear Space for Alignment Scores

- If you are only interested in the cost or score of an alignment, you need to use only $O(n)$ space.
- How?

When filling in an entry (gray box) we only look at the current and previous rows.

Only need to keep those two rows in memory.
We can do more...

- Given 2 strings X and Y, we can, in linear space and $O(nm)$ time, compute the **cost** of aligning...
 - every prefix of X with Y
 - X with every prefix of Y
 - a particular prefix of X with every prefix of Y
 - a particular suffix of X with every suffix of Y

- How can we do that?
Best Alignment Between Prefix of X and Y

Score of an optimal alignment between Y and a prefix of X
Fill in the matrix by columns...

What is this column?
What is this column?

Best scores between X and all prefixes of Y
Fill in the matrix by columns...

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>9g</td>
<td>8g</td>
<td>7g</td>
<td>6g</td>
<td>5g</td>
<td>4g</td>
<td>3g</td>
<td>2g</td>
<td>1g</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>8</td>
<td>7</td>
<td>6</td>
<td>5</td>
<td>4</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>G</td>
<td>7</td>
<td>6</td>
<td>5</td>
<td>4</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T</td>
<td>6</td>
<td>5</td>
<td>4</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T</td>
<td>5</td>
<td>4</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>G</td>
<td>4</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>A</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>10</td>
<td>11</td>
<td>12</td>
</tr>
</tbody>
</table>

What is this column?

Best scores between a prefix of X and all prefixes of Y

Best scores between a prefix of X and all prefixes of Y

What is this column?
Cost of Alignment Between X and All Suffixes of Y

\[
B[i, j] = \min\left\{ \text{cost}(x_i, y_j) + B[i + 1, j + 1], \text{gap} + B[i, j + 1], \text{gap} + B[i + 1, j] \right\}
\]
Cost of Alignment Between X and All Suffixes of Y

Best alignment between suffix x[10..] and suffix y[6..]

\[
B[i, j] = \min \begin{cases}
\text{cost}(x_i, y_j) + B[i + 1, j + 1] \\
gap + B[i, j + 1] \\
gap + B[i + 1, j]
\end{cases}
\]

Exactly the same reasoning as doing the “forward” dynamic programming.
Cost of Alignment Between X and All Suffixes of Y

"Backward" dynamic programming.

Exactly the same reasoning as doing the "forward" dynamic programming.

\[
B[i, j] = \min \begin{cases}
\text{cost}(x_i, y_j) + B[i + 1, j + 1] \\
gap + B[i, j + 1] \\
gap + B[i + 1, j]
\end{cases}
\]
Can We Find the Alignment in $O(n)$ Space?

- Surprisingly, yes, we can output the optimal alignment in linear space.

- This will cost us some extra computation but only a constant factor.

- For such a dramatic reduction in space, it's often worth it.

- **Idea**: a divide-and-conquer algorithm to compute half alignments.
Divide & Conquer

• General algorithmic design technique:
 • Split large problem into a few subproblems.
 • Recursively solve each subproblem.
 • Merge the resulting answers.
The Best Path Uses Some Cell in the Middle Column

bestq = 5

n/2
The Best Path Uses Some Cell in the Middle Column
Notation

• **AlignValue**\((x, y) := \) compute the cost of the best alignment between \(x\) and \(y\) in \(O(\min |x|, |y|)\) space.

• Finding the actual alignment is equivalent to finding all the cells that the *optimal backtrace* passes through.

• Call the optimal backtrace the **ArrowPath**.
First Attempt At Space Efficient Alignment

In the optimal alignment, the first $n/2$ characters of x are aligned with the first q characters of y for some q.

\[
\begin{array}{c}
12345678 \\
x = \text{ACGTACTG} \\
y = \text{A-GT-CTG} \\
\hline
q = 3
\end{array}
\]

We don’t know q, so we have to try all possible q.

ArrowPath := []

```python
def Align(x, y):
    n := |x|; m := |y|
    if n or m ≤ 2: use standard alignment
    for q := 0..m:
        v1 := AlignValue(x[1..n/2], y[1..q])
        v2 := AlignValue(x[n/2+1..n], y[q+1..m])
        if v1 + v2 < best: bestq = q; best = v1 + v2
    Add (n/2, bestq) to ArrowPath
    Align(x[1..n/2], y[1..bestq])
    Align(x[n/2+1..n], y[bestq+1..m])
```

$O(n)$ or $O(m)$ space

$O(n+m)$ space

$O(n+m)$ space

find the q that minimizes the cost of the alignment
Problem
Problem

• This works in linear space.
Problem

• This works in linear space.

• BUT: not in $O(nm)$ time. Why?
Problem

- This works in linear space.

- **BUT:** not in $O(nm)$ time. Why?

- It’s too expensive to solve all those AlignValue problems in the `for` loop.
Problem

• This works in linear space.

• BUT: not in $O(nm)$ time. Why?

• It’s too expensive to solve all those AlignValue problems in the for loop.

• Define:

 • $\text{AllYPrefixCosts}(x, i, y) = \text{returns an array of the scores of optimal alignments between } x[1..i] \text{ and all prefixes of } Y.$

 • $\text{AllYSuffixCosts}(x, i, y) = \text{returns an array of the scores of optimal alignments between } x[i..n] \text{ and all suffixes of } y.$

 • These are implemented as described in previous slides by returning the last row or last column of the DP matrix.
We still try all possible q, but we use the fact that we can compute the cost between a given prefix and all suffixes in linear space.

\[
\text{ArrowPath} := []
\]

```
def Align(x, y):
    n := |x|; m := |y|
    if n or m \leq 2: use standard alignment

    YPrefix := AllYPrefixCosts(x, n/2, y)
    YSuffix := AllYSuffixCosts(x, n/2+1, y)

    for q := 0..m:
        cost = YPrefix[q] + YSuffix[n-q]
        if cost < best: bestq = q; best = cost

    Add (n/2, bestq) to ArrowPath
    Align(x[1..n/2], y[1..bestq])
    Align(x[n/2+1..n], y[bestq+1..m])
```

Space Efficient Alignment

x = ACGTACTG
y = A–GT–CTG

$\text{q} = 3$
Running Time Recurrence, I

Full recurrence:

\[
T(n, 2) \leq cn \\
T(2, m) \leq cm \\
T(n, m) \leq cmn + T(n/2, q) + T(n/2, m - q) \\
\]

Align(x[1..n/2], y[1..bestq])

Align(x[n/2+1..n], y[bestq+1..m])

Simplify: assume both sequences have length \(n \), and that we get a perfect split in half every time, \(q=n/2 \):

\[
T(n) \leq 2T(n/2) + cn^2
\]

Solves as:

\[
T(n) = O(n^2) \quad \Rightarrow \text{guess } O(nm)
\]
Running Time Recurrence, 2

\[T(n, 2) \leq cn \]
\[T(2, m) \leq cm \]
\[T(n, m) \leq cmn + T(n/2, q) + T(n/2, m - q) \]

Guess: \(T(n,m) \leq kmn, \) for some \(k. \)

Proof, by induction:

Base cases: If \(k \geq c \) then \(T(n,2) \leq cn \leq c2n \leq k2n = kmn \)

Induction step: Assume \(T(n', m') \leq km'n' \) for pairs \((n',m') \) with a product smaller than \(nm \):

\[
T(n, m) \leq cmn + T(n/2, q) + T(n/2, m - q) \\
\leq cmn + kqn/2 + k(m - q)n/2 \\
= cmn + kqn/2 + kmn/2 - kqn/2 \\
= (c + k/2)mn \\
\]

\(k = 2c \implies T(n, m) \leq 2cmn = kmn \)
Recap

- Can compute the cost of an alignment easily in linear space.
- Can compute the cost of a string with all suffixes of a second string in linear space.
- Divide and conquer algorithm for computing the actual alignment (traceback path in the DP matrix) in linear space.
- Still uses $O(nm)$ time!