Shortest Paths in a Graph

Slides by Carl Kingsford

Feb. 5, 2014

Based on/Reading: Chapter 4.5 of Kleinberg & Tardos
Shortest Paths in a Weighted, Directed Graph

Given a directed graph G with lengths $\ell_e > 0$ on each edge e:

Goal: Find the shortest path from a given node s to every other node in the graph.
Shortest Paths

Shortest Paths. Given directed graph \(G \) with \(n \) nodes, and non-negative lengths on each edge, find the \(n \) shortest paths from a given node \(s \) to each \(v_i \).

- Dijkstra’s algorithm (1959) solves this problem.
- If we have an undirected graph, we can replace each undirected edge by 2 directed edges:

 ![Diagram](image)

- If all the edge lengths are \(= 1 \), how can we solve this?
Shortest Paths. Given directed graph \(G \) with \(n \) nodes, and non-negative lengths on each edge, find the \(n \) shortest paths from a given node \(s \) to each \(v_i \).

- Dijkstra’s algorithm (1959) solves this problem.
- If we have an undirected graph, we can replace each undirected edge by 2 directed edges:

\[
\text{\begin{tikzpicture}[baseline=-0.1cm]
 \node[circle, draw] (A) at (0,0) {};
 \node[circle, draw] (B) at (1,0) {};
 \node[circle, draw] (C) at (2,0) {};
 \draw (A) -- node[pos=0.5] {k} (B);
\end{tikzpicture}} \quad \Rightarrow \quad \text{\begin{tikzpicture}[baseline=-0.1cm]
 \node[circle, draw] (A) at (0,0) {};
 \node[circle, draw] (B) at (1,0) {};
 \node[circle, draw] (C) at (2,0) {};
 \draw (A) -- node[pos=0.5] {k} (B);
 \draw (B) to [out=0,in=180] node[pos=0.5] {k} (C);
\end{tikzpicture}}
\]

- If all the edge lengths are \(= 1 \), how can we solve this? \(\text{BFS} \)
General Tree Growing

Dijkstra’s algorithm is just a special case of tree growing:

- Let T be the current tree T, and
- Maintain a list of frontier edges: the set of edges of G that have one endpoint in T and one endpoint not in T:
- Repeatedly choose a frontier edge (somehow) and add it to T.
Tree Growing

TreeGrowing(graph G, vertex v, func nextEdge):
 T = (v, ∅)
 S = set of edges incident to v
 While S is not empty:
 e = nextEdge(G, S)
 T = T + e // add edge e to T
 S = updateFrontier(G, S, e)
 return T

- The function nextEdge(G, S) returns a frontier edge from S.
- updateFrontier(G, S, e) returns the new frontier after we add edge e to T.
nextEdge for Shortest Path

- Let u be some node that we’ve already visited (it will be in S).

- Let $d(u)$ be the length of the $s-u$ path found for node $u \in S$.

- nextEdge: return the frontier edge (u, v) for which $d(u) + \text{length}(u, v)$ is minimized.

- The “$d(u)$” term is the difference from Prim’s algorithm.
Example

\[d[s] = 0; \quad d[u] = 1 \]
(green gives frontier)

\[d[w] = 2 \]
Proof of Correctness

Theorem. Let T be the set of nodes explored at some point during the algorithm. For each $u \in T$, the path to u found by Dijkstra’s algorithm is the shortest.

Proof. By induction on the size of T. **Base case:** When $|T| = 1$, the only node in T is s, for which we’ve obviously found the shortest path.

Induction Hypothesis: Assume theorem is true when $|T| \leq k$.

Let v be the $(k + 1)^{st}$ node added using edge (u, v).

Let P_v be the path chosen by Dijkstra’s to v and let P be any other path from s to v.

Then we have the situation on the next slide.
Proof, cont.

The path to \(v \) chosen by Dijkstra’s is of length \(\leq \) the alternative blue path.
Theorem. There is some optimal set of shortest paths from source \(s \) such that their union forms a tree.

Proof. Dijkstra’s algorithm is correct and produces a tree.
Implementation of Dijkstra

1: for u ∈ V do dist[u] ← ∞
2: H ← MAKE_HEAP()
3: u ← s # (s is an arbitrary start vertex)
4: while u ≠ null do
5: for v ∈ NEIGHBORS(u) do
6: # If the distance is smaller than before, we have to update
7: if dist[u] + d(u,v) < dist[v] then
8: dist[v] ← dist[u] + d(u,v)
9: if v ∉ H then
10: INSERT(H, v, dist[v]) # Sift up for new key
11: else
12: REDUCE_KEY(H, v, dist[v]) # Sift up for new key
13: parent[v] ← u
14: u ← DELETE_MIN(H)
15: return parent
Running time of Dijkstra’s Algorithm

Same as Prim’s MST algorithm:

- Every edge is processed in the `for` loop at most once.

- In response to that processing, we may either
 1. do nothing; \(O(1) \),
 2. insert a item into the heap of at most \(|V|\) items; \(O(\log |V|) \), or
 3. reduce the key of an item in a heap of at most \(|V|\) items; \(O(\log |V|) \)

- Total time is therefore: \(O(|E| \log |V|) \).