Finding closest pair of points

Problem Given a set of points \(\{p_1, \ldots, p_n\} \) find the pair of points \(\{p_i, p_j\} \) that are closest together.
Goal

- Brute force gives an $O(n^2)$ algorithm: just check every pair of points.

- Can we do it faster? Seems like no: don’t we have to check every pair?

- In fact, we can find the closest pair in $O(n \log n)$ time.

- What’s a reasonable first step?
Divide

Split the points with line L so that half the points are on each side.

Recursively find the pair of points closest in each half.
Let $d = \min\{d_{\text{left}}, d_{\text{right}}\}$.

- d would be the answer, except maybe L split a close pair!
If there is a pair \(\{p_i, p_j\} \) with \(\text{dist}(p_i, p_j) < d \) that is split by the line, then both \(p_i \) and \(p_j \) must be within distance \(d \) of \(L \).

Let \(S_y \) be an array of the points in that region, sorted by decreasing \(y \)-coordinate value.
Slab Might Contain All Points

- Let S_y be an array of the points in that region, sorted by decreasing y-coordinate value.

- S_y might contain all the points, so we can’t just check every pair inside it.

Theorem. Suppose $S_y = p_1, \ldots, p_m$. If $\text{dist}(p_i, p_j) < d$ then $j - i \leq 15$.

In other words, if two points in S_y are close enough in the plane, they are close in the array S_y.
Proof, 1

Divide the region up into squares with sides of length $d/2$:

How many points in each box?

<table>
<thead>
<tr>
<th></th>
<th></th>
<th>1</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>9</td>
<td>10</td>
<td>11</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>13</td>
<td>14</td>
<td>15</td>
<td></td>
</tr>
</tbody>
</table>
Proof, 1

Divide the region up into squares with sides of length $d/2$:

How many points in each box?

At most 1 because each box is completely contained in one half and no two points in a half are closer than d.

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
</tr>
<tr>
<td>8</td>
<td>9</td>
<td>10</td>
<td>11</td>
</tr>
<tr>
<td>12</td>
<td>13</td>
<td>14</td>
<td>15</td>
</tr>
</tbody>
</table>
Proof, 2

Suppose 2 points are separated by > 15 indices.

- Then, at least 3 full rows separate them (the packing shown is the smallest possible).

- But the height of 3 rows is $> 3d/2$, which is $> d$.

- So the two points are farther than d apart.
Linear Time Merge

Therefore, we can scan S_y for pairs of points separated by $< d$ in linear time.

ClosestPair(Px, Py):

```
if |Px| == 2: return dist(Px[1],Px[2])  // base

d1 = ClosestPair(FirstHalf(Px,Py))  // divide
d2 = ClosestPair(SecondHalf(Px,Py))
d = min(d1,d2)

Sy = points in Py within d of L  // merge
For i = 1,...,|Sy|:
    For j = 1,...,15:
        d = min( dist(Sy[i], Sy[j]), d )
Return d
```
Total Running Time

- Divide set of points in half each time: \(O(\log n) \) depth recursion

- Merge takes \(O(n) \) time.

- Recurrence: \(T(n) \leq 2T(n/2) + cn \)

- Same as MergeSort \(\implies O(n \log n) \) time.
Major topics covered so far

- Minimum spanning tree (Prim’s, Kruskal, Reverse-Delete, Cycle Property, Cut Property)
- Heaps
- Heapsort
- Union-find (two implementations)
- Big-O notation
- BFS
- DFS
- Topological sort (two algorithms)
- Bipartite testing
- Shortest paths in graphs: Dijkstra’s, Bellman-Ford
- A*
- Traveling salesman
- Counting inversions
- Mergesort
- Closest pair of points
Algorithm design techniques covered

▶ Tree growing (Examples: Prim’s MST, Dijkstra’s)

▶ BFS, DFS (Examples: topological sort, bipartite testing)

▶ Data structure-based (Example: Heapsort)

▶ Heuristic search with A* (Examples: TSP, geometric shortest paths)

▶ Divide and conquer (Examples: Mergesort, counting inversions, closest points)