Shortest Paths with Negative Weights

Slides by Carl Kingsford

Feb. 11, 2013

Based in part on Section 6.8
Shortest Path Problem

Shortest Path with Negative Weights. Given directed graph G with weighted edges $d(u, v)$ that may be positive or negative, find the shortest path from s to t.
Complication of Negative Weights

Negative cycles: If some cycle has a negative total cost, we can make the $s - t$ path as low cost as we want:
Complication of Negative Weights

Negative cycles: If some cycle has a negative total cost, we can make the $s - t$ path as low cost as we want:

Go from s to some node on the cycle, and then travel around the cycle many times, eventually leaving to go to t.

Assume, therefore, that G has no negative cycles.
Let’s just add a big number!

- Adding a large number M to each edge doesn’t work!

- The cost of a path P will become $M \times \text{length}(P) + \text{cost}(P)$.

- If M is big, the number of hops (length) will dominate.
Let $dist_s(v)$ be the current estimated distance from s to v.

At the start, $dist_s(s) = 0$ and $dist_s(v) = \infty$ for all other v.

Ford step. Find an edge (u, v) such that

$$dist_s(u) + d(u, v) \leq dist_s(v)$$

and set $dist_s(v) = dist_s(u) + d(u, v)$.
Repeatedly Applying Ford Step

Theorem. After applying the Ford step until

\[\text{dist}_s(u) + d(u, v) \geq \text{dist}_s(v) \]

for all edges, \(\text{dist}_s(u) \) will equal the shortest-path distance from \(s \) to \(u \) for all \(u \).

Proof. We show that, for every \(v \):

- There is a path of length \(\text{dist}_s(v) \)
- No path is shorter

So \(\text{dist}_s(v) \) must be the length of the shortest path.
A path of length $dist_s(v)$ exists

Theorem. After any number i of applications of the Ford step, either $dist_s(v) = \infty$ or there is a $s - v$ path of length $dist_s(v)$.

Proof. Let v be a vertex such that $dist_s(v) < \infty$. We proceed by induction on i.

Base case: When $i = 0$, only $dist_s(s) = 0 < \infty$ and there is a path of length 0 from s to s.

Induction hypothesis: Assume true for all applications $< i$.
A path of length $\text{dist}_s(v)$ exists, II

Proof, continued.

Induction step: Let $\text{dist}_s(v)$ be the distance updated during the ith application. It is updated using some edge (u, v) using the rule:

$$\text{dist}_s(v) = \text{dist}_s(u) + d(u, v)$$

$\text{dist}_s(u)$ must be $\leq \infty$ and thus must have been updated by some application of the Ford rule at a step before i.

Therefore, by the induction hypothesis, there is a path P_{su} of length $\text{dist}_s(u)$.

Now, on the ith application $P_{su} + (u, v)$ is a path of length $\text{dist}_s(u) + d(u, v) = \text{dist}_s(v)$
No paths are shorter

Theorem. Let P_{sv} be any path from s to v. When the Ford step can no longer be applied, $\text{length}(P_{sv}) \geq \text{dist}_s(v)$.

Proof. By induction on $\#$ edges in P_{sv}.

Base case: When $|P_{sv}| = 1$, it consists of a single edge (s, v) and because the Ford step can’t be applied $d(s, v) \geq \text{dist}_s(v)$.

Induction hypothesis: Assume true for all P_{sv} of k or fewer edges.

Induction step: Let P_{sv} be an $s - v$ path of $k + 1$ edges. $P_{sv} = P_{su} + (u, v)$ for some u.

\[
\text{length}(P_{sv}) = \text{length}(P_{sv}) + d(u, v) \geq \text{dist}_s(u) + d(u, v) \geq \text{dist}_s(v)
\]

Otherwise, the Ford step could be applied.
Implementation

ShortestPath(G, s, t):
 Initialize dist[u] = ∞ for all u
 dist[s] = 0
 # queue tracks nodes that are candidates for Ford rule
 queue = [s]
 while queue is not empty:
 v = front of queue (and remove v)
 for w ∈ neighbors(v):
 # Apply Ford rule if we can
 if dist[v] + d(v,w) < dist[w]:
 dist[w] = dist[v] + d(v,w)
 parent[w] = v
 if w ∉ queue: put w at end of queue
Running time

- $n =$ number of nodes
- $m =$ number of edges

After $dist_s(v)$ has been updated k times, it corresponds to a path of k edges.

A shortest path can contain at most $n - 1$ edges, so each $dist_s(v)$ can be updated at most $n - 1$ times.

Updating all vertices once takes time $O(m)$ since we look at each edge twice.

Total running time $= O(mn)$.

Note that this is slower than Dijkstra’s algorithm in general.
Another view

Definition. Let $\text{dist}_s(v, i)$ be minimum cost of a path from s to v that uses at most i edges.

1. If best $s - v$ path uses at most $i - 1$ edges, then $\text{dist}_s(v, i) = \text{dist}_s(v, i - 1)$.

2. If best $s - v$ uses i edges, and the last edge is (w, v), then $\text{dist}_s(v, i) = d(w, v) + \text{dist}_s(w, i - 1)$.
Subproblems, picture

\[\text{dist}_S(w_1, i-1) \]

\[\text{dist}_S(w_2, i-1) \]
Recurrence

Let $N(w)$ be the neighbors of w.

$$dist_s(v, i) = \text{cost of best path from } s \text{ to } v \text{ using at most } i \text{ edges}.$$

Recurrence:

$$dist_s(v, i) = \min \left\{ \begin{array}{l} dist_s(v, i - 1) \\ \min_{w \in N(v)} dist_s(w, i - 1) + d(w, v) \end{array} \right\}$$

Goal: Compute $dist_s(t, n - 1)$.
Code

ShortestPath(G=(V,E), s, t):
 Initialize dist_s[x, i] for all x
 For i = 1,...,|V|-1:
 For v in V:
 // find the best w on which to apply the Ford rule
 best_w = None
 for w in N(v): // N(v) are neighbors of v
 best_w = min(best_w, dist_s[w, i-1] + d[w,v])

 dist_s[v,i] = min(best_w, dist_s[v, i-1])
 EndFor
 EndFor
 Return M[t, n-1]
Running Time

Simple Analysis:

- $O(n^2)$ subproblems
- $O(n)$ time to compute each entry in the table (have to search over all possible neighbors w).
- Therefore, runs in $O(n^3)$ time.

A better analysis:

- Let n_v be the number of edges entering v.
- Filling in each entry actually only takes $O(n_v)$ time.
- Total time $= O \left(n \sum_{v \in V} n_v \right) = O(nm)$.