Applications of DFS, BFS

Slides by Carl Kingsford

Feb. 6, 2013

Based on/Reading: Chapter 3 of Kleinberg & Tardos
An Application of BFS
Testing Bipartiteness

Problem Determine if a graph G is bipartite.

Bipartite graphs can't contain odd cycles:
How can we test if G is bipartite?

- Do a BFS starting from some node s.
- Color even levels "blue" and odd levels "red."
- Check each edge to see if any edge has both endpoints the same color.
How can we test if G is bipartite?

- Do a BFS starting from some node s.
- Color even levels “blue” and odd levels “red.”
- Check each edge to see if any edge has both endpoints the same color.
Proof of Correctness for Bipartite Testing

One of two cases happen:

1. There is no edge of G between two nodes of the same layer. In this case, every edge just connects two nodes in adjacent layers. But adjacent layers are oppositely colored, so G must be bipartite.

2. There is an edge of G joining two nodes x and y of the same layer L_j. Let $z \in L_i$ be the least common ancestor of x and y in the BFS tree T. $z - x - y - z$ is a cycle of length $2(j - i) + 1$, which is odd, so G is not bipartite.
An Application of DFS
DAGs

- A directed, acyclic graph (DAG) is a graph that contains no directed cycles. (After leaving any node \(u \) you can never get back to \(u \) by following edges along the arrows.)

- DAGs are very useful in modeling project dependencies: Task \(i \) has to be done before task \(j \) and \(k \) which have to be done before \(m \).
Topological Sort

Given a DAG D representing dependencies, how do you order the jobs so that when a job is started, all its dependencies are done?

Topological Sort. Given a DAG $D = (V, E)$, find a mapping f from V to $\{1, \ldots, |V|\}$, so that for every edge $(u, v) \in E$, $f(u) < f(v)$.
Theorem. Every DAG contains a vertex with no incoming edges.
Topological Sort, II

Theorem. Every DAG contains a vertex with no incoming edges.

Proof. Suppose not.

Then keep following edges backward and in fewer than \(n + 1 \) steps you’ll reach a node you’ve already visited.

This is a directed cycle, contradicting that the graph is a DAG. \(\square \)
Theorem. Every DAG contains a vertex with no incoming edges.

Proof. Suppose not.

Then keep following edges backward and in fewer than $n + 1$ steps you’ll reach a node you’ve already visited.

This is a directed cycle, contradicting that the graph is a DAG. □

How can we turn this into an algorithm?
Topological Sort Algorithm

Topological sort:

1. Let \(i = 1 \)
2. Find a node \(u \) with no incoming edges, and let \(f(u) = i \)
3. Delete \(u \) from the graph
4. Increment \(i \)

Implementation: Maintain

- \(\text{Income}[w] = \text{number of incoming edges for node } w \)
- a list \(S \) of nodes that currently have no incoming edges.

When we delete a node \(u \), we decrement \(\text{Income}[w] \) for all neighbors \(w \) of \(u \). If \(\text{Income}[w] \) becomes 0, we add \(w \) to \(S \).
Discovery and Finishing Times

DFS can be used to associate 2 numbers with each node of a graph G:

- discovery time: $d[u] = \text{the time at which } u \text{ is first visited}$
- finishing time: $f[u] = \text{the time at which all } u \text{ and all its neighbors have been visited.}$

Clearly $d[u] \leq f[u]$.
Non-DFS-Trees Edges of a DAG

Let \((u, v)\) be an edge of a DAG \(D\). What can we say about the relationship between \(f[u]\) and \(f[v]\)?
Non-DFS-Trees Edges of a DAG

Let \((u, v)\) be an edge of a DAG \(D\). What can we say about the relationship between \(f[u]\) and \(f[v]\)?

Back edges and Left-Right edges cannot occur

\[f[v] < f[u] \text{ if } (u, v) \in D. \]
Topological Sort Via Finishing Times

Every edge \((u, v)\) in a DAG has \(f[v] < f[u]\).

If we list nodes from largest \(f[u]\) to smallest \(f[u]\) then every edge goes from left to right.

Exactly a topological sort.

So: as each node is finished, add it to the front of a linked list.