02-713 Introduction

Slides by Carl Kingsford

Jan. 14, 2013

Reading: KT Chapter 1
Objective of this Course

To study general computational problems and their algorithms, with a focus on the principles used to design those algorithms.

After passing this class, you should be able to:

1. Design algorithms using several common techniques
2. Prove a worst-case running time for many algorithms
3. Prove a problem is probably hard (NP-complete)
Example Problems
Example I: Low-cost network design
Example II: Finding closest pair of points

Given a set of points \(\{p_1, \ldots, p_n\} \) find the pair of points \(\{p_i, p_j\} \) that are closest together.
Example III: RNA folding

GAUGGCAAAUGCUAAGGCCU... →
Example IV: Scheduling \(k \) planes

- LGA → YVR, 9am - 7pm
- PIT → KOA, 6am - 8pm
- DFW → MSY 4pm - 6pm
Example V: Side-chain positioning

The optimum solution (determined by the integer-programming option of CPLEX) is \(\text{OPT} \). For problems of this size, optimal relaxation and rounding give a solution within \(\frac{1}{28} \) of \(\text{OPT} \). The average energy gap found by rounding the relaxations is \(\frac{1}{28} \) with significantly better average relative gaps.

The semidefinite programs were solved using version 6.0 of the SDPA (Fujisawa et al. 1997) package, an implementation of an infeasible primal-dual interior-point method. For both the protein-design problems and the simulation of Goldstein (1994), a polynomial-time algorithm, the best value over 1,000 roundings and the empirical average objective value is a better indicator of the distribution obtained from a polynomial optimization program. The resulting problem had 385 nodes, seven positions, and 63,313 nonzero cost-matrix entries. Simple SDP rounding schemes find the optimum solution; the SDP solution was rounded 1,000 times with both the projection and the empirical average objective value.

The semidefinite programs were solved using version 6.0 of the SDPA (Fujisawa et al. 1997) package, an implementation of an infeasible primal-dual interior-point method. For both the protein-design problems and the simulation of Goldstein (1994), a polynomial-time algorithm, the best value over 1,000 roundings and the empirical average objective value is a better indicator of the distribution obtained from a polynomial optimization program. The resulting problem had 385 nodes, seven positions, and 63,313 nonzero cost-matrix entries. Simple SDP rounding schemes find the optimum solution; the SDP solution was rounded 1,000 times with both the projection and the empirical average objective value.

For both the protein-design problems and the simulation of Goldstein (1994), a polynomial-time algorithm, the best value over 1,000 roundings and the empirical average objective value is a better indicator of the distribution obtained from a polynomial optimization program. The resulting problem had 385 nodes, seven positions, and 63,313 nonzero cost-matrix entries. Simple SDP rounding schemes find the optimum solution; the SDP solution was rounded 1,000 times with both the projection and the empirical average objective value.
Design of algorithms

General techniques:

- Greedy .. (Chapter 4)
- Divide & conquer (Chapter 5)
- Dynamic programming (Chapter 6)
- Network flow .. (Chapter 7)
- Linear and integer programming (Sections 11.6-11.7)

Not all algorithms fit into these categories, but a very large fraction do.
Analysis of algorithms

- Prove **correctness**
 (the algorithm always returns the right answer)

- Discuss how to **implement**
 (what data structures do we need to implement the algorithm?).

- Prove **worst-case running time**
 (no matter the input, it will never run slower than we expect).

- Prove no algorithm can do better
 (theory of computational complexity).
Tentative Schedule

1. Introduction, Minimum Spanning Tree case study, and Python

2. Elementary algorithms: divide & conquer and graph algorithms
 - Asymptotic analysis
 - Closest pair of points
 - Fast Fourier Transform
 - Graph search: Breadth first, depth first, topological sorting
 - Shortest path algorithms
 - A* search

3. Advanced algorithmic design techniques
 - Dynamic programming
 - Network flow
 - Linear and integer programming
 - NP-completeness
 - Randomized algorithms
Homeworks

- Near-weekly homeworks
- 10% of your grade
- Encouraged to discuss homeworks with other students in class

MUST WRITE UP HOMEWORKS ON YOUR OWN

- You must list, at the top of your homework, those people with whom you discussed the problems & any sources you used
- Homework answers must be typeset and submitted online (instructions will be on website)
- A few homeworks will consist of programming in Python
What does “on your own” mean?

You cannot, for example:

- look at another person’s homework
- have them look at yours to see if it is correct
- take notes from a discussion and edit them into your homework
- sit in a group and continue discussing the homework while writing it up

Intent: you can gather around a whiteboard with your fellow students and discuss how to solve the problems. Then you must all walk away and write the answers up separately.
Exams

Two non-cumulative midterm exams, each 25% of grade:

- Friday, March 1st, 2013
- Friday, April 26, 2013

A cumulative final exam:

- According to the official university exam schedule.
Why Python?

http://xkcd.com/353/
Why Python?

Pros:

▶ Expressive, math-like syntax
▶ Support for modern programming paradigms (object orientation, some functional programming)
▶ Scripting language avoids compilation
▶ Extensive on-line help and documentation
▶ Extensive libraries (graphs, matlab functions, numerical methods)
▶ Widely used in bioinformatics & other disciplines

Cons:

▶ Can be slower than other languages (especially loops)
▶ Less memory efficient than other languages
Homework 0: Survey

Complete the survey at

http://www.cs.cmu.edu/~ckingsf/class/02713-s13/survey.html

Due by 11:59pm on Tuesday, Jan 15.