Principles of Software Construction: Objects, Design, and Concurrency

Distributed System Design, Part 2

Charlie Garrod Jonathan Aldrich

© 2012-14 C Kästner, C Garrod, J Aldrich, and W Scherlis
Administrivia

• Homework 5b due tonight
 ▪ Finish by tomorrow (14 Nov) 10 a.m. if you want to be considered as a "Best Framework" for Homework 5c

• 15-413: Software Engineering Practicum

• Homework 3 arena winners in class next week...
Key concepts from Tuesday
Networking in Java

• The java.net.InetAddress:
 static InetAddress getByByName(String host);
 static InetAddress getByAddress(byte[] b);
 static InetAddress getLocalHost();

• The java.net.Socket:
 Socket(InetAddress addr, int port);
 boolean isConnected();
 boolean isClosed();
 void close();
 InputStream getInputStream();
 OutputStream getOutputStream();

• The java.net.ServerSocket:
 ServerSocket(int port);
 Socket accept();
 void close();
 ...
Aside: The robustness vs. redundancy curve
Metrics of success

• Reliability
 ▪ Often in terms of availability: fraction of time system is working
 ▪ 99.999% available is "5 nines of availability"

• Scalability
 ▪ Ability to handle workload growth
Today: Distributed system design

- Introduction to distributed systems, continued
 - Motivation: reliability and scalability
 - Failure models
 - Techniques for:
 - Reliability (availability)
 - Scalability
 - Consistency

- MapReduce: A robust, scalable framework for distributed computation...
 - ...on replicated, partitioned data
Types of failure behaviors

- Fail-stop
- Other halting failures
- Communication failures
 - Send/receive omissions
 - Network partitions
 - Message corruption
- Data corruption
- Performance failures
 - High packet loss rate
 - Low throughput
 - High latency
- Byzantine failures
Common assumptions about failures

- Behavior of others is fail-stop (ugh)
- Network is reliable (ugh)
- Network is semi-reliable but asynchronous
- Network is lossy but messages are not corrupt
- Network failures are transitive
- Failures are independent
- Local data is not corrupt
- Failures are reliably detectable
- Failures are unreliably detectable
Some distributed system design goals

• The end-to-end principle
 ▪ When possible, implement functionality at the ends (rather than the middle) of a distributed system

• The robustness principle
 ▪ Be strict in what you send, but be liberal in what you accept from others
 • Protocols
 • Failure behaviors

• Benefit from incremental changes

• Be redundant
 ▪ Data replication
 ▪ Checks for correctness
Replication for scalability: Client-side caching

- **Architecture before replication:**
 - Problem: Server throughput is too low
 - Solution: Cache responses at (or near) the client
 - Cache can respond to repeated read requests

```
client → front-end

{alice:90, bob:42, ...}
```

```
client → front-end

{alice:90, bob:42, ...}
```
Replication for scalability: Client-side caching

- Hierarchical client-side caches:

```
client -> cache -> cache
client -> cache
client
```

Database:
```
{alice:90, bob:42, ...}
```
Replication for scalability: Server-side caching

- **Architecture before replication:**
 - Problem: Database server throughput is too low
 - Solution: Cache responses on multiple servers
 - Cache can respond to repeated read requests

```
client  ── front-end ── database server: {alice:90, bob:42, ...
client  ── front-end ── cache
  ── front-end ── cache
  ── front-end ── cache
```

Cache invalidation

- **Time-based invalidation** (a.k.a. expiration)
 - Read-any, write-one
 - Old cache entries automatically discarded
 - No expiration date needed for read-only data

- **Update-based invalidation**
 - Read-any, write-all
 - DB server broadcasts invalidation message to all caches when the DB is updated
Cache replacement policies

- **Problem:** caches have finite size

- **Common* replacement policies**
 - Optimal (Belady's) policy
 - Discard item not needed for longest time in future
 - Least Recently Used (LRU)
 - Track time of previous access, discard item accessed least recently
 - Least Frequently Used (LFU)
 - Count # times item is accessed, discard item accessed least frequently
 - Random
 - Discard a random item from the cache

*Common policies may vary in different contexts.
Partitioning for scalability

- Partition data based on some property, put each partition on a different server.
Horizontal partitioning

- a.k.a. "sharding"
- A table of data:

<table>
<thead>
<tr>
<th>username</th>
<th>school</th>
<th>value</th>
</tr>
</thead>
<tbody>
<tr>
<td>cohen</td>
<td>CMU</td>
<td>9</td>
</tr>
<tr>
<td>bob</td>
<td>CMU</td>
<td>42</td>
</tr>
<tr>
<td>alice</td>
<td>Yale</td>
<td>90</td>
</tr>
<tr>
<td>pete</td>
<td>Yale</td>
<td>12</td>
</tr>
<tr>
<td>deb</td>
<td>MIT</td>
<td>16</td>
</tr>
<tr>
<td>reif</td>
<td>MIT</td>
<td>40</td>
</tr>
</tbody>
</table>
Recall: Basic hash tables

- For n-size hash table, put each item x in the bucket: x.hashCode() % n
Partitioning with a distributed hash table

- Each server stores data for one bucket
- To store or retrieve an item, front-end server hashes the key, contacts the server storing that bucket
Consistent hashing

- **Goal:** Benefit from incremental changes
 - Resizing the hash table (i.e., adding or removing a server) should not require moving many objects

- **E.g., Interpret the range of hash codes as a ring**
 - Each bucket stores data for a range of the ring
 - Assign each bucket an ID in the range of hash codes
 - To store item x don't compute $x.hashCode() \% n$. Instead, place x in bucket with the same ID as or next higher ID than $x.hashCode()$
Problems with hash-based partitioning

- Front-ends need to determine server for each bucket
 - Each front-end stores look-up table?
 - Master server storing look-up table?
 - Routing-based approaches?

- Places related content on different servers
 - Consider *range* queries:

    ```
    SELECT * FROM users WHERE lastname STARTSWITH 'G'
    ```
Master/tablet-based systems

- Dynamically allocate range-based partitions
 - Master server maintains tablet-to-server assignments
 - Tablet servers store actual data
 - Front-ends cache tablet-to-server assignments

```
client
  → front-end

client
  → front-end

Master:
  {a-c:[2],
   d-g:[3,4],
   h-j:[3],
   k-z:[1]}

Tablet server 1:
  k-z:
   {pete:12, reif:42}

Tablet server 2:
  a-c:
   {alice:90, bob:42, cohen:9}

Tablet server 3:
  d-g:
   {deb:16}
  h-j:
   {}

Tablet server 4:
  d-g:
   {deb:16}
```
Today: Distributed system design

- Introduction to distributed systems, continued
 - Motivation: reliability and scalability
 - Failure models
 - Techniques for:
 - Reliability (availability)
 - Scalability
 - Consistency

- MapReduce: A robust, scalable framework for distributed computation...
 - ...on replicated, partitioned data
Map from a functional perspective

• **map(f, x[0…n−1])**

 • Apply the function f to each element of list x

![Diagram of map operation]

• E.g., in Python:

  ```python
def square(x): return x*x
map(square, [1, 2, 3, 4]) would return [1, 4, 9, 16]
```

• Parallel map implementation is trivial

 • What is the work? What is the depth?
Reduce from a functional perspective

- `reduce(f, x[0...n-1])`
 - Repeatedly apply binary function `f` to pairs of items in `x`, replacing the pair of items with the result until only one item remains
 - One sequential Python implementation:
    ```python
def reduce(f, x):
    if len(x) == 1: return x[0]
    return reduce(f, [f(x[0],x[1])] + x[2:])
```
 - e.g., in Python:
    ```python
def add(x,y): return x+y
reduce(add, [1,2,3,4])  # would return 10 as
reduce(add, [3,3,4])
reduce(add, [6,4])
reduce(add, [10]) -> 10
```
Reduce with an associative binary function

• If the function \oplus is associative, the order \oplus is applied does not affect the result

1 + ((2+3) + 4) \quad 1 + (2 + (3+4)) \quad (1+2) + (3+4)

• Parallel reduce implementation is also easy
 - What is the work? What is the depth?
Distributed MapReduce

• The distributed MapReduce idea is similar to (but not the same as!):
 \[\text{reduce}(f_2, \text{map}(f_1, x)) \]

• Key idea: a "data-centric" architecture
 - Send function \(f_1 \) directly to the data
 - Execute it concurrently
 - Then merge results with reduce
 - Also concurrently

• Programmer can focus on the data processing rather than the challenges of distributed systems
MapReduce with key/value pairs (Google style)

- **Master**
 - Assign tasks to workers
 - Ping workers to test for failures

- **Map workers**
 - Map for each key/value pair
 - Emit intermediate key/value pairs

- **Reduce workers**
 - Sort data by intermediate key and aggregate by key
 - Reduce for each key

the shuffle:
MapReduce with key/value pairs (Google style)

- E.g., for each word on the Web, count the number of times that word occurs
 - For Map: key1 is a document name, value is the contents of that document
 - For Reduce: key2 is a word, values is a list of the number of counts of that word

\[f1(String\ key1, String\ value): \]
\[
 for\ each\ word\ w\ in\ value:\n EmitIntermediate(w, 1);
\]

\[f2(String\ key2, Iterator\ values): \]
\[
 int\ result = 0;\n for\ each\ v\ in\ values:\n result += v;\n Emit(key2, result);
\]

Map: (key1, v1) → (key2, v2)*
Reduce: (key2, v2*) → (key3, v3)*
MapReduce: (key1, v1)* → (key3, v3)*

MapReduce: (docName, docText)* → (word, wordCount)*
MapReduce architectural details

- Usually integrated with a distributed storage system
 - Map worker executes function on its share of the data

- Map output usually written to worker's local disk
 - Shuffle: reduce worker often pulls intermediate data from map worker's local disk

- Reduce output usually written back to distributed storage system
Handling server failures with MapReduce

• Map worker failure:
 ▪ Re-map using replica of the storage system data

• Reduce worker failure:
 ▪ New reduce worker can pull intermediate data from map worker's local disk, re-reduce

• Master failure:
 ▪ Options:
 • Restart system using new master
 • Replicate master
 • ...
The beauty of MapReduce

- **Low communication costs (usually)**
 - The shuffle (between map and reduce) is expensive

- **MapReduce can be iterated**
 - Input to MapReduce: key/value pairs in the distributed storage system
 - Output from MapReduce: key/value pairs in the distributed storage system
Another MapReduce example

- E.g., for person in a social network graph, output the number of mutual friends they have
 - For Map: key1 is a person, value is the list of her friends
 - For Reduce: key2 is ???, values is a list of ???

\[f1(String\ key1,\ String\ value): \quad f2(String\ key2,\ Iterator\ values): \]

MapReduce: (person, friends)* \rightarrow (pair\ of\ people,\ count\ of\ mutual\ friends)*
Another MapReduce example

- E.g., for person in a social network graph, output the number of mutual friends they have
 - For Map: key1 is a person, value is the list of her friends
 - For Reduce: key2 is a pair of people, values is a list of 1s, for each mutual friend that pair has

\[
\text{f1(String key1, String value):}
\]

\[
\text{for each pair of friends in value:}
\]

\[
\text{EmitIntermediate(pair, 1);}
\]

\[
\text{f2(String key2, Iterator values):}
\]

\[
\text{int result = 0;}
\]

\[
\text{for each v in values:}
\]

\[
\text{result += v;}
\]

\[
\text{Emit(key2, result);}
\]

MapReduce: (person, friends)* → (pair of people, count of mutual friends)*
And another MapReduce example

- E.g., for each page on the Web, create a list of the pages that link to it
 - For Map: key1 is a document name, value is the contents of that document
 - For Reduce: key2 is ???, values is a list of ???

```java
f1(String key1, String value):

f2(String key2, Iterator values):
```

MapReduce: (docName, docText)* → (docName, list of incoming links)*
Coming next…

- More distributed systems
 - MapReduce