Principles of Software Construction: Objects, Design and Concurrency

Introduction to Distributed Systems and Map/Reduce

Christian Kästner
Charlie Garrod

© 2012-13 C Garrod, C Kästner, J Aldrich, and W Scherlis
Administrivia

- Homework 5c due tonight
- Want to nominate a TA for the Alan J. Perlis SCS Student Teaching Award?
 - Send nomination to Greg Kesden <gkesden@cs.cmu.edu>
- Scrabble!
- Carnival!
Key topics from last Thursday

• Failure models

• Distributed system design principles

• Replication
 ▪ For reliability
 ▪ For scalability
Today

- Partitioning
 - For scalability

- Map/reduce: a robust, scalable framework for distributed computation
Partitioning for scalability

- Partition data based on some property, put each partition on a different server

CMU server:
{cohen:9, bob:42, ...}

Yale server:
{alice:90, pete:12, ...}

MIT server:
{deb:16, reif:40, ...}
Horizontal partitioning

- a.k.a. "sharding"
- A table of data:

<table>
<thead>
<tr>
<th>username</th>
<th>school</th>
<th>value</th>
</tr>
</thead>
<tbody>
<tr>
<td>cohen</td>
<td>CMU</td>
<td>9</td>
</tr>
<tr>
<td>bob</td>
<td>CMU</td>
<td>42</td>
</tr>
<tr>
<td>alice</td>
<td>Yale</td>
<td>90</td>
</tr>
<tr>
<td>pete</td>
<td>Yale</td>
<td>12</td>
</tr>
<tr>
<td>deb</td>
<td>MIT</td>
<td>16</td>
</tr>
<tr>
<td>reif</td>
<td>MIT</td>
<td>40</td>
</tr>
</tbody>
</table>
Recall: Basic hash tables

- For n-size hash table, put each item x in the bucket: x.hashCode() % n
Partitioning with a distributed hash table

- Each server stores data for one bucket
- To store or retrieve an item, front-end server hashes the key, contacts the server storing that bucket
Consistent hashing

- **Goal:** Benefit from incremental changes
 - Resizing the hash table (i.e., adding or removing a server) should not require moving many objects

- **E.g.,** Interpret the range of hash codes as a ring
 - Each bucket stores data for a range of the ring
 - Assign each bucket an ID in the range of hash codes
 - To store item x don't compute x.hashCode() % n. Instead, place x in bucket with the same ID as or next higher ID than x.hashCode()
Problems with hash-based partitioning

- Front-ends need to determine server for each bucket
 - Each front-end stores look-up table?
 - Master server storing look-up table?
 - Routing-based approaches?

- Places related content on different servers
 - Consider range queries:
    ```sql
    SELECT * FROM users WHERE lastname STARTSWITH 'G'
    ```
Master/tablet-based systems

- Dynamically allocate range-based partitions
 - Master server maintains tablet-to-server assignments
 - Tablet servers store actual data
 - Front-ends cache tablet-to-server assignments

![Diagram of client, front-end, and tablet servers with key-value pairs]
Combining approaches

- Many of these approaches are *orthogonal*

- E.g., For master/tablet systems:
 - Masters are often partitioned and replicated
 - Tablets are replicated
 - Tablet-to-server assignments frequently cached
 - Whole master/tablet system can be replicated
Today

- Partitioning
 - For scalability

- Map/reduce: a robust, scalable framework for distributed computation
Goal: Robust, scalable distributed computation...

- ...on replicated, partitioned data
Map

- \(\text{map}(f, x[0...n-1]) \)
 - Apply the function \(f \) to each element of list \(x \)

- E.g., in Python:
  ```python
def square(x): return x*x
map(square, [1, 2, 3, 4]) would return [1, 4, 9, 16]
```

- Parallel map implementation is trivial
 - What is the work? What is the depth?
• **reduce**(\(f, \ x[0...n-1] \))
 - Repeatedly apply binary function \(f \) to pairs of items in \(x \), replacing the pair of items with the result until only one item remains
 - One sequential Python implementation:
    ```python
def reduce(f, x):
    if len(x) == 1: return x[0]
    return reduce(f, [f(x[0],x[1])] + x[2:])
```
 - e.g., in Python:
    ```python
def add(x,y): return x+y
reduce(add, [1,2,3,4])
```
 would return 10 as
    ```python
reduce(add, [1,2,3,4])
reduce(add, [3,3,4])
reduce(add, [6,4])
reduce(add, [10]) \rightarrow 10
```
Reduce with an associative binary function

• If the function ξ is associative, the order ξ is applied does not affect the result

\[
\begin{align*}
1 &+ ((2+3) + 4) \\
1 &+ (2 + (3+4)) \\
(1+2) &+ (3+4)
\end{align*}
\]

• Parallel reduce implementation is also easy
 • What is the work? What is the depth?
Distributed map/reduce

- The distributed map/reduce idea is just:
 \[\text{reduce}(f2, \text{map}(f1, x)) \]

- Key idea: a "data-centric" architecture
 - Send function \(f_1 \) directly to the data
 - Execute it concurrently
 - Then merge results with reduce
 - Also concurrently

- Programmer can focus on the data processing rather than the challenges of distributed systems
Map/reduce with key/value pairs (Google style)

- E.g., for each word on the Web, count the number of times that word occurs
 - For Map: key1 is a document name, value is the contents of that document
 - For Reduce: key2 is a word, values is a list of the number of counts of that word

```java
f1(String key1, String value):
    for each word w in value:
        EmitIntermediate(w, "1");
```

```java
f2(String key2, Iterator values):
    int result = 0;
    for each v in values:
        result += ParseInt(v);
    Emit(AsString(result));
```

Map: (key1, v1) → (key2, v2)*
Reduce: (key2, v2*) → v2*
MapReduce: (key1, v1)* → (key2, v2*)*
MapReduce: (docName, docText)* → (word, wordCount)*
Map/reduce with key/value pairs (Google style)

- **Master**
 - Assign tasks to workers
 - Ping workers to test for failures

- **Map workers**
 - Map for each key/value pair
 - Emit intermediate key/value pairs

- **Reduce workers**
 - Sort data by intermediate key and aggregate by key
 - Reduce for each key
Map/reduce architectural details

- Usually integrated with a distributed storage system
 - Map worker executes function on its share of the data

- Map output usually written to worker's local disk
 - Shuffle: reduce worker often pulls intermediate data from map worker's local disk

- Reduce output usually written back to distributed storage system
Handling server failures with map/reduce

- **Map worker failure:**
 - Re-map using replica of the storage system data

- **Reduce worker failure:**
 - New reduce worker can pull intermediate data from map worker's local disk, re-reduce

- **Master failure:**
 - Options:
 - Restart system using new master
 - Replicate master
 - ...

```
Master:
{a-c:2,
d-g:3,
h-j:3,
k-z:1}
```

```
Map/reduce worker 1:
{k-z: {pete:12,
      reif:42}}
```

```
Map/reduce worker 2:
{a-c: {alice:90,
       bob:42,
       cohen:9}}
```

```
Map/reduce worker 3:
{d-g: {deb:16},
h-j: {}}
```
The beauty of map/reduce

- **Low communication costs (usually)**
 - The shuffle (between map and reduce) is expensive

- **Map/reduce can be iterated**
 - Input to map/reduce: key/value pairs in the distributed storage system
 - Output from map/reduce: key/value pairs in the distributed storage system
Next week: static analysis