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We describe our full body humanoid control approach developed for the simulation phase of the DARPA
Robotics Challenge (DRC), as well as the modifications made for the DARPA Robotics Challenge Trials. We
worked with the Boston Dynamics Atlas robot. Our approach was initially targeted at walking, and it consisted
of two levels of optimization: a high-level trajectory optimizer that reasons about center of mass and swing foot
trajectories, and a low-level controller that tracks those trajectories by solving floating base full body inverse
dynamics using quadratic programming. This controller is capable of walking on rough terrain, and it also
achieves long footsteps, fast walking speeds, and heel-strike and toe-off in simulation. During development of
these and other whole body tasks on the physical robot, we introduced an additional optimization component
in the low-level controller, namely an inverse kinematics controller. Modeling and torque measurement errors
and hardware features of the Atlas robot led us to this three-part approach, which was applied to three tasks in
the DRC Trials in December 2013. C© 2014 Wiley Periodicals, Inc.

1. INTRODUCTION

Originally targeted at rough terrain bipedal walking, we
developed a walking control approach that can achieve a
sequence of footstep targets and walk fast on level ground
with no obstacles. Our approach is rooted in model-based
optimal control, as it takes a desired sequence of foot steps,
uses optimization to generate a trajectory for the center of
mass (CoM), and then tracks this trajectory using inverse
dynamics (ID) and inverse kinematics (IK). The controller
consists of two levels. The high-level controller performs
online trajectory optimization using differential dynamic
programming (Jacobson & Mayne, 1970) with a simplified
model that only reasons about the center of mass of the
robot. We also use a quintic spline in Cartesian space to
smoothly connect two consecutive foot steps for the swing
foot. The low-level controller was originally designed to use
inverse dynamics alone, and we added an inverse kinemat-
ics component to cope with modeling error when control-
ling the physical robot. For the DARPA Robotics Challenge
(DRC) Trials, we redesigned the high-level controller to also
handle ladder climbing and full body manipulation, and
we successfully applied our approach to these problems as
well. The two-stage optimization-based architecture sepa-
rates the behavior level design process and full body control
problem cleanly, and it offers us a versatile and powerful
platform for rapidly developing multiple applications for
the DRC. Figure 1 shows a diagram of our approach.
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2. RELATED WORK

For walking, the relationship between net ground reaction
force and center of mass motion has been well studied over
the past 50 years (Vukobratović & Borovac, 2004), and it has
been widely used in gait generation. Orin & Goswami (2008)
connected both linear and angular momentum, generalized
velocity of the system, and net external wrench by intro-
ducing the centroidal momentum matrix, which inspired
many of the later high-level controllers for balancing and
walking. Our high-level controller for dynamic walking is
similar in spirit to preview control proposed by Kajita et al.
(2003) in the sense that we use a CoM model, reason about
zero moment point (ZMP), and use future information to
guide the current trajectory. Our approach can be easily
generalized to nonlinear models, as opposed to the linear
inverted pendulum model (LIPM) used in preview control.
We explicitly add the vertical dimension in our CoM model
to handle height variations on rough terrain. Like capture
point methods (Pratt, Carff, Drakunov, & Goswami, 2006),
we take the next few steps into consideration during trajec-
tory optimization, although we do not plan to come to rest
at the end. With a stronger emphasis on robustness, Urata
et al. (2012) and Faraji, Pouya, & Ijspeert (2014) demon-
strated three-dimensional (3D) push recovery and walking
by reoptimizing foot step locations in a receding horizon
fashion using LIPM dynamics. Although foot step loca-
tions can also be optimized during the our process, we cur-
rently focus on achieving a fixed sequence of desired foot
steps.
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Figure 1. The task-dependent high-level controller generates a
set of desired objectives such as center of mass or limb motion,
and constraints such as center of pressure, friction, and joint
limits. The generic high-level controller’s input can range from
a foot step sequence to a pregrasp pose or even operator com-
mands depending on the specific application. The low-level
full body controller, which is enclosed by the dashed rectangle,
takes the high-level objectives and robot states (q, q̇) as inputs
and outputs of the desired position qIK, velocity q̇IK, and torque
τ for each joint. Note that inverse kinematics uses its own in-
ternal states rather than the measured robot states.

Using full body inverse dynamics for force control has
become a popular topic in recent humanoid research. This
direction of research originated from Khatib (1987). Within
this broad category, control designers can directly specify
reference motions in task space, then rely on using convex
optimization to handle constraints and solve for controls
that best track the reference motions. Although detailed for-
mulations differ, most active research has converged to for-
mulating the floating base inverse dynamics as a quadratic
programming (QP) problem. Hutter et al. (2012), Hutter
et al. (2014), Herzog, Righetti, Grimminger, Pastor, & Schaal
(2014), Saab et al. (2013), de Lasa et al. (2010), Escande et al.
(2014), and Wensing & Orin (2013a) explored using a hier-
archical approach to resolve redundant degrees of freedom
in humanoid robots. These approaches typically ensure low
priority objectives are within the null space of higher pri-
ority ones. A solution to resolve hierarchical quadratic pro-
grams presented in Escande et al. (2014) is more general and
significantly faster than previous methods (Kanoun, Lami-
raux, & Wieber, 2011). Although the method is currently
applied to solve inverse kinematics, the authors claim it is
also applicable to inverse dynamics. A hierarchical frame-
work designed for humanoid robots to handle constraints
and objectives is presented in Sentis, Park, & Khatib (2010)
and Sentis & Khatib (2006). Contrary to these hierarchical

approaches that have hard constraints, we prefer using soft
constraints by adding corresponding terms in the cost func-
tion with high penalties. We gain numerical stability by
sacrificing a small fraction of precision. There is also much
interest in formulating a smaller optimization problem to
reduce computation time. Contact forces can be removed
from the equations of motion using orthogonal decomposi-
tion (Mistry, Buchli, & Schaal, 2010; Righetti, Buchli, Mistry,
Kalakrishnan, & Schaal, 2013; Righetti, Buchli, Mistry, &
Schaal, 2011). Ott, Roa, & Hirzinger (2011) demonstrated
a balancing controller on a torque-controlled humanoid,
in which simple Proportional Derivative (PD) servos were
used to generate a desired net ground reaction wrench,
which was then distributed among predefined contacts us-
ing optimization. Ramos, Mansard, Stasse, & Soueres (2012)
described a recent effort using floating base inverse dynam-
ics and ZMP-based pattern generation for dynamic walk-
ing. Their inverse dynamics formulation solves a smaller
QP with decoupled dynamics. Lee & Goswami (2010) have a
two-stage optimization setup. The first optimizes individual
ground reaction forces and center of pressure (CoP) for each
contact and the resulting admissible change in centroidal
momenta. Then another least-squares problem is solved for
the state acceleration. Joint torques are generated explicitly.
Koolen et al. (2013) generated desired centroidal momenta
change based on instantaneous capture points, and they
used QP to optimize for acceleration and contact forces.
Joint torques are then generated with explicit inverse dy-
namics. Kuindersma, Permenter, & Tedrake (2014) are simi-
lar in terms of optimization variables and torque generation,
but a novel QP solver is implemented to exploit the observa-
tion that inequality constraints rarely change in this context.
Zapolsky, Drumwright, Havoutis, Buchli, & C. (2013) ap-
plied QP-based inverse dynamics to a quadruped robot on
a slippery surface. Without using constrained optimization,
a novel approach to generate full body torques with a combi-
nation of gravity compensation and task-dependent attrac-
tors is proposed in Moro, Gienger, Goswami, Tsagarakis, &
Caldwell (2013). We continue to use the formulation previ-
ously developed in our group (Stephens, 2011; Whitman,
2013; Whitman & Atkeson, 2010), which is similar to de
Lasa et al. (2010), Bouyarmane & Kheddar (2011), and Bou-
yarmane, Vaillant, Keith, & Kheddar (2012). We directly
optimize a quadratic cost in terms of state accelerations,
torques, and contact forces on the full robot model. This
design choice gives us the most flexibility in terms of trad-
ing off directly among physical quantities of interest. We
are also able to directly reason about inequality constraints
such as center of pressure within the support polygon, fric-
tion, and torque limits. Although it becomes a bigger QP
problem, we are still able to solve it in real time.

One traditionally popular approach to controlling hu-
manoid robots is through inverse kinematics with stiff joint
position tracking. On the other hand, inverse-dynamics-
based approaches have gained increasing acceptance by
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providing compliant motions and robustness to external
perturbations. However, the performance of inverse dy-
namics methods is heavily dependent on high-quality dy-
namic models, which are often very difficult to produce for
a physical robot. In contrast, inverse kinematics based ap-
proaches only require kinematic models, which are much
easier to generate in practice. Thus, we supplemented our
original two-part implementation with an inverse kinemat-
ics controller for the physical robot.

On our Atlas robot, a hydraulic robot built by Boston
Dynamics, independent joint level servos compute valve
commands i based on

i = Kp(qd − q) + Kd (q̇d − q̇) + Kf (τd − τ ) + c,

where qd , q̇d , and τd are desired joint and torque values, q, q̇,
and τ are the measured values, and c contains the constant
valve bias term plus some other auxiliary feedback terms.
This joint level servo runs at 1 kHz, while we can update
qd , q̇d , and τd at 333 Hz. In previous work (Feng, Xinjilefu,
Huang, & Atkeson, 2013; Stephens, 2011; Whitman, 2013),
we focused on torque control with inverse dynamics that
computes desired torques, τd . Inverse dynamics is operat-
ing at the acceleration and force level, thus it alone cannot
compute qd or q̇d to fully use the high bandwidth joint level
controller. We could integrate q̈d , the output from inverse
dynamics, to generate q̇d and qd , but we find this approach
leads to oscillations and unstable behaviors on the physical
robot. To take full advantage of the onboard high bandwidth
joint PD servos, we need to compute qd and q̇d with inverse
kinematics.

Our inverse kinematics is also formulated as a
quadratic program, where the unknowns are the desired
velocities of the floating base and all the joints q̇ik . At each
time step, we solve for a set of q̇IK that obeys kinematic con-
straints and minimizes a combination of costs. qIK is com-
puted by integrating q̇IK. The approach we take originates
from the damped least-squares method that was first used
by Wampler (1986) and Nakamura & Hanafusa (1986). We
formulate inverse kinematics as a QP problem, and we treat
the contacts as soft constraints. The approach of solving for
q̇IK and integrating to obtain qIK is the primary difference
between our approach and most traditional inverse kine-
matic approaches such as that of Kajita et al. (2003) and
Hirai, Hirose, Haikawa, & Takenaka (1998). Although Mis-
try, Nakanishi, Cheng, & Schaal (2008) solved for q̇ as well,
it is computed by carefully constructing and inverting a
matrix composed of end effector and contact constraint Ja-
cobians. Computing q̇IK and integrating it to compute qIK

can get stuck in local minima, but it does not produce dis-
continuous results, a problem with methods that compute q

directly. Another advantage for this gradient based method
is that it responds very rapidly to changes in the high-level
commands.

The rest of the paper is organized as follows: Section 3
describes our high-level controller for walking that takes a

sequence of desired foot steps and uses trajectory optimiza-
tion to generate key reference motion. Section 4 introduces
our full body controller that employs inverse dynamics and
inverse kinematics. Sections 5 and 6 expand the previous
section with a detailed formulation for each component.
Section 7 explains how our state estimator works. Section 8
shows some results for walking in an idealized simulated
environment. Section 9 describes our controller’s use on
the physical robot in three applications during the DARPA
Robotics Challenge Trials. Sections 10 and 11 discuss limita-
tions and future research directions and conclude the paper.

3. HIGH-LEVEL REFERENCE TRAJECTORY
GENERATION FOR WALKING

In this section, we describe how our high-level behavior
controller for walking generates a desired trajectory using
trajectory optimization. Given a sequence of desired foot
steps, we assign uniform timing to them. We then plan
a CoM trajectory that minimizes stance foot ankle torque
with differential dynamic programming (DDP), which is an
iterative trajectory optimization technique that updates the
current control signals based on the spatial derivatives of
the value function, and it uses the updated controls to gen-
erate a trajectory for the next iteration (Jacobson & Mayne,
1970). In the current implementation of the high-level con-
troller, we approximate the entire robot as a point mass,
without considering angular momentum or the effect of the
swing leg. The dynamics of this simple model are

⎡
⎣ẍ

ÿ

z̈

⎤
⎦ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

(x − px)Fz

mz

(y − py)Fz

mz

Fz

m
− g

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

The state X = (x, y, z, ẋ, ẏ, ż) is the position and velocity
of the CoM. The control u = (px, py, Fz) is the commanded
CoP and force in the z direction. The current high-level
controller is not aware of step length limits, and we are
relying on the foot step planner to produce a reasonable
foot step sequence.

DDP applies dynamic programming along a trajectory.
It can find globally optimal trajectories for problems with
time-varying linear dynamics and quadratic costs, and it
rapidly converges to locally optimal trajectories for prob-
lems with nonlinear dynamics or costs. This approach mod-
ifies (and complements) existing approximate dynamic pro-
gramming approaches in the following ways: 1) We approxi-
mate the value function and policy using many local models
(quadratic for the value function, linear for the policy) along
the trajectory. 2) We use trajectory optimization to directly
optimize the sequence of commands u0,N−1 and states X0,N .
3) Refined local models of the value function and policy
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are created as a byproduct of our trajectory optimization
process.

We represent value functions and policies using Taylor
series approximations at each time step along a trajectory.
For a state Xt , the local quadratic model for the value func-
tion is

V t (X) ≈ V t
0 + V t

X(X − Xt ) + 1
2

(X − Xt )T V t
XX(X − Xt ),

where t is the time index, X is some query state, V t
0 is the

constant term, V t
X is the first-order gradient of the value

function with respect to the state evaluated at Xt , and V t
XX

is the second-order spatial gradient evaluated at Xt . The
local linear policy is

ut (X) = ut
0 − Kt (X − Xt ),

where ut
0 is a constant term, and Kt is the first derivative

of the local policy with respect to the state evaluated at Xt ,
and it is also the gain matrix for a local linear controller. V t

0 ,
V t

X , V t
XX , and Kt are stored along with the trajectory.

The one-step cost function is

L(X, u) = 0.5(X − X∗)T Q(X − X∗) + 0.5(u − u∗)T R(u − u∗),

where R is positive definite and Q is positive semidefinite.
X∗ is given as a square wave, instantly switching to the next
foot step location and staying there for the entire stance
with velocities equal to zero. u∗ is specified in a similar way,
with px and py being at the desired center of pressure in
the world frame, and Fz = mg. In the VRC, we used m =
95 kg. Q is a 6 by 6 diagonal matrix, where its diagonal
entries are 1e−4, 1e−4, 1, 1e−2, 1e−2, and 1e−2. R is a 3 by
3 diagonal matrix, where its diagonal entries are 1, 1, and
1e−6.

For each iteration of DDP, we propagate the spatial
derivatives of the value function V t

XX and V t
X backward

in time, and we use this information to compute an
update to the control signal. Then we perform a forward
integration pass using the updated controls to generate
a new trajectory. Although we are performing nonlinear
trajectory optimization, due to analytical gradients of
the dynamics, this process is fast enough in an online
setting.

Initialization: Given the last desired center-of-mass lo-
cation and desired center of pressure, (X∗, u∗) in the foot
step sequence, we first compute a linear quadratic regu-
lator (LQR) solution at that point, and we use its policy
to generate an initial trajectory from the initial X0. VXX of
this LQR solution is also used to initialize the backward
pass.

Backward pass: Given a trajectory, one can integrate the
value function and its first and second spatial derivatives
backward in time to compute an improved value function
and policy. We utilize the “Q function” notation from re-
inforcement learning: Qt (X, u) = Lt (X, u) + V t+1[f (X, u)].

The backward pass of DDP can be expressed as

Qt
X = Lt

X + V t
Xf t

X,

Qt
u = Lt

u + V t
Xf t

u,

Qt
XX = Lt

XX + V t
Xf t

XX + f tT
X V t

XXf t
X,

Qt
uX = Lt

uX + V t
Xf t

uX + f tT
u V t

XXf t
X,

Qt
uu = Lt

uu + V t
Xf t

uu + f tT
u V t

XXf t
u,

Kt = (Qt
uu)−1Qt

uX,

δut = (Qt
uu)−1Qt

u,

V t−1
X = Qt

X − Qt
XKt ,

V t−1
XX = Qt

XX − Qt
XuK

t .

Derivatives are taken with respect to the subscripts and
evaluated at (X, u).

Forward pass: Once we have computed the local linear
feedback policy Kt and updates for controls δut , we inte-
grate forward in time using

ut
new = (ut − δut ) − Kt (Xt

new − Xt )

with Xt0
new = X0. We terminate DDP when the cost-to-go at

X0 does not change significantly across iterations. This ap-
proach can be thought of as a generalized version of Kajita’s
preview control (Kajita et al., 2003). Figure 2 shows trajecto-
ries of the CoM generated with LQR policy and after DDP
optimization.

Swing foot trajectory: The swing foot trajectory is gen-
erated using a quintic spline between the starting and end-
ing positions. For foot orientation, we take the yaw angle
specified in the foot step sequence, assume zero roll angle,
and estimate the pitch angle by the relative height change
from consecutive foot steps. Body orientation at the end
of the swing phase is computed by averaging the yaw an-
gles from consecutive foot steps, assuming zero roll angle,
and a task-specific pitch angle (e.g., leaning forward when
climbing a steep ramp). Both body and foot orientation are
represented as quaternions and interpolated using spherical
linear interpolation (slerp).

4. FULL BODY CONTROL

This section introduces our use of quadratic programming
to perform inverse dynamics and inverse kinematics. For
many tasks, we specify desired Cartesian motions for spe-
cific locations on the robot (e.g., foot, hand, and CoM) in the
high-level controller. The low-level controller takes these
motions as inputs and computes physical quantities for
each individual joint such as joint position, velocity, accel-
eration, and torque. Some of these outputs are then used
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Figure 2. Desired CoP in the X and Y axes and CoM height trajectories are plotted with solid red lines from top to bottom, and
they are referred to as pxd, pyd, zd in the legend. The desired CoPs presented here are set to be at the middle of the stance foot, and
the sharp changes are contact switching points. One can design a more complex desired CoP trajectory that has smooth transitions
involving a double support phase. Trajectories shown by dashed lines are generated by the LQR policy. The state trajectories are
x0, y0, z0, and the control trajectories are px0, py0, Fz0

mg
, respectively. These are used to initialize DDP. The optimization results are

x1, y1, z1 and px1, py1, Fz1
mg

as references in the joint level servos on the robot. Figure 1
shows a system block diagram. Joint position and velocity
are computed separately from joint acceleration and torque.
We refer to the former problem as inverse kinematics and the
latter as inverse dynamics. Both are formulated as quadratic
programming problems, whose general form is shown in
Eq. (1).

min
X

0.5X T GX + gT X ,

s.t. CEX + cE = 0,

CIX + cI ≥ 0. (1)

The unknown, X , and constraints, CE, cE, CI , and cI , are
problem-specific, which we will elaborate on in the follow-
ing sections. Both QP problems are solved at each time step
in a 3 ms control loop with a standard solver. We add regu-
larization terms for all the variables in both QP’s cost func-
tions to keep them numerically well conditioned.

For both problems, we optimize a cost function of the
form 0.5‖AX − b‖2. Thus G = AT A and g = −AT b. A and b

can be decomposed into smaller blocks as

A =

⎡
⎢⎢⎢⎣

w0A0

w1A1
...

wnAn

⎤
⎥⎥⎥⎦, b =

⎡
⎢⎢⎢⎣

w0b0

w1b1
...

wnbn

⎤
⎥⎥⎥⎦. (2)

Through this cost function, we specify a set of desired be-
haviors according to the high-level controller’s goal, and
we penalize the robot’s deviation from the desired behavior.
Each row in Eq. (2) emphasizes a certain desired behavior.
wi are weights that we use to express the relative priority
among often overly constrained and potentially conflicting
goals. During implementation, finding reasonable weights
is fairly straightforward, and it takes fewer than one day of
robot experiments.

Journal of Field Robotics DOI 10.1002/rob



6 • Journal of Field Robotics—2014

5. INVERSE DYNAMICS

In this section, we describe how we compute inverse dy-
namics using quadratic programming. The equations of
motion and the constraint equations for a floating base hu-
manoid robot can be written as

[M(q) − S − J T (q)]

⎡
⎣ q̈

τ

F

⎤
⎦ + h(q, q̇) = 0,

where (q, q̇) is the full state of the system including the six
degrees of freedom (DOF) of the floating base; M(q) is the
inertia matrix; h(q, q̇) is the sum of gravitational, centrifu-
gal, and Coriolis forces; S is a selection matrix whose top six
rows that correspond to the floating base are zeros and the
rest form an identity matrix; τ is a vector of joint torques;
J T (q) is the Jacobian matrix for all the contacts; and F is a
vector of all contact forces in the world frame. The dimen-
sions of F and J T depend on the number of contacts. Given
a state (q, q̇), the equations of motion are linear in terms of
X = [q̈ τ F ]T . We use the equations of motions as equal-
ity constraints. The inequality constraints consist of various
terms such as joint torque limits and contact force limits due
to friction cone constraints and constraints keeping the CoP
in the support polygon.

5.1. Inverse Dynamics Cost Function

The optimization process can be thought of as a least-
squares minimization problem penalizing X for deviating
from some desired X ∗. We list a few examples of the objec-
tives that can be part of the optimization criterion by adding
rows to Eq. (2).

5.1.1. Cartesian Space Acceleration

Since

ẍ = J (q)q̈ + J̇ (q, q̇)q̇,

we can penalize deviation from the desired Cartesian accel-
eration using

ACart = [J (q) 0 0],

bCart = ẍ∗ − J̇ (q, q̇)q̇.

The input ẍ∗ is computed by

ẍ∗ = Kid(x∗
d − x) + Did(ẋ∗

d − ẋ) + ẍ∗
d , (3)

where x∗
d , ẋ∗

d , and ẍ∗
d are specified by a higher-level con-

troller, x and ẋ are computed by forward kinematics based
on the current robot state, and Kid and Did are gains. Many
objectives such as CoM, hand, foot, and torso motion and
orientation are specified in this form. Depending on the ob-
jectives, we sometimes drop the rows in the Jacobian that
we do not want to penalize. It is often much easier for the
high-level controller to specify motions in a body’s local

frame. We transform the Jacobian by a rotation matrix in
that case.

Rather than treating contacts as hard constraints, we
find that using a soft penalty with a high weight is generally
numerically more stable and faster to solve. For such contact
costs, we disregard x∗

d and ẋ∗
d , and we set ẍ∗ = 0.

5.1.2. Center of Pressure Tracking

Given the forces and torques, bF,b M , specified in the foot
frame by the high-level optimizer, the location of the center
of pressure in the foot frame is

p =
[−bMy/

bFz
bMx/

bFz

]
.

We can penalize the center of pressure deviation with

Acop =
[

0 0
[

0 0 p∗
x 0 1 0

0 0 p∗
y −1 0 0

] [
R 0
0 R

]]
,

bcop = 0.

Here we have written out the portion of Acop corresponding
to the force component, a six-element vector F . Since F is in
the world frame, we need to first transform the forces and
torques into the foot frame. R is the 3 × 3 rotation matrix
from the world frame to the foot frame. (p∗

x, p
∗
y) is the desired

center of pressure in the foot frame given by a high-level
controller.

5.1.3. Weight Distribution

In double support, it is often desirable to specify the desired
weight distribution w∗ = Fzl/(Fzl + Fzr ). We add this term
to the cost function using

Aweight = [0 0 Sweight],

bweight = 0,

where Sweight is a row vector with zeros, except the entry for
Fzl is 1 − w∗ and the entry for Fzr is −w∗.

5.1.4. Direct Tracking and Regularization

We can also directly penalize deviations of X from desired
values with

Astate = I,

bstate = [q̈∗ τ ∗ F ∗]T .

Zero is used for a desired value if no target value is specified.
This term is useful for directly controlling specific joints or
forces. It also regularizes X to make the QP problem well-
conditioned.

Journal of Field Robotics DOI 10.1002/rob
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5.1.5. Change in Torques

To avoid high-frequency oscillations, we penalize changes
in τ with

Adτ = [0 I 0],

bdτ = τprev,

where τprev is the output from the last time step. A similar
term is used to penalize changes in contact force.

5.2. Constraints

Equations of motion are used as equality constraints. Torque
limits can be easily added into the inequality constraints.
Friction constraints are approximated by

|bFx | ≤ μbFz,

|bFy | ≤ μbFz.

The center of pressure also has to be under the feet, which
can be written as

d−
x ≤ −bMy/

bFz ≤ d+
x ,

d−
y ≤ bMx/

bFz ≤ d+
y ,

where bF and bM denote forces and torques in the foot
frame, and d− and d+ are the sizes of the feet. The body
frame forces and torques are computed by rotating F into
the foot frame.

5.3. Parameters

Weights are summarized in Table I. wqdd is for joint acceler-
ation. wcomdd and wutorsowd are for CoM position acceleration
and upper torso orientation acceleration. wfootdd is for foot
position and orientation acceleration. wregF and wregT au are
regularization weights for contact force and joint torques.
ww is for weight distribution. wcop is for center of pressure.
wdF and wdτ penalize changes in contact force and joint
torques between two consecutive time steps. For CoM track-
ing, Kid and Did in Eq. (3) have diagonal elements 15 and 0.4.
For upper body orientation tracking, Kid and Did in Eq. (3)
have diagonal elements 5 and 0.3. For foot tracking, Kid and
Did in Eq. (3) have diagonal elements 5 and 0.3. Parameters
are task-dependent, but they do not change much. These
parameters are for the static walking task on the physical
robot.

Table I. Weights for ID cost function.

wqdd wcomdd wutorsowd wfootdd wcop

10−2 1 1 1 10−2

ww wregF wregT au wdF wdτ

10−3 10−4 10−5 10−4 3 × 10−3

6. INVERSE KINEMATICS

So far, neither the high-level behavior controller nor the
inverse dynamics controller have specified desired veloci-
ties and positions for all the joints. Only task level quantities
such as center of mass velocity and position have been speci-
fied. Due to modeling error and the availability of joint level
servos, it is useful to specify targets for all the joints. Un-
like traditional inverse kinematics approaches that generate
desired positions for an entire desired trajectory ahead of
time, we compute a desired velocity at each time step and
integrate it to get a desired position. Computation is av-
eraged over the duration of a motion, and the controller
can be much more responsive to changes in the high-level
commands.

For the inverse kinematics quadratic program,X = q̇IK.
The numerically integrated floating base and joint position
vector is denoted by qIK. Our inverse kinematics controller
formulation is very similar to the inverse dynamics con-
troller except rather than using the real robot states, we use
internal states to compute the desired velocities in Eq. (4).
The internal states are set to the real robot states in the ini-
tialization stage. All the internal states are denoted with the
subscript IK.

6.1. Inverse Kinematics Cost Function

We list a few examples of the objectives that can be part of
the optimization criterion by adding rows to Eq. (2).

6.1.1. Cartesian Space Velocity

We penalize deviation from a desired Cartesian velocity of
a body part with

ACart = J (qik),

bCart = ẋ∗,

where

ẋ∗ = KIK(x∗
d − xik) + ẋ∗

d . (4)

Like our inverse dynamics quadratic program, x∗
d and

ẋ∗
d are given by the high-level controller. The desired Carte-

sian target x∗
d is used to implement something we call “an-

chor” points. The diagram in Figure 1 shows that the actual
physical robot state is not used by the inverse kinematics
controller. Without any such feedback, it is easy for the in-
verse kinematics to diverge significantly from the measured
position of the robot. This becomes a problem because we
wish to command desired locations (for, e.g., feet, hands,
or CoM) in world coordinates. To tie the inverse kinematics
controller root position to reality, we use contact positions
as “anchor” points. We use a “leaky” integrator to adjust
the desired contact position x∗

contactd toward the measured
contact position xcontact,

x∗
contactd = αxcontact + (1 − α)x∗

contactd . (5)
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x∗
contactd is the input to the inverse kinematics, and it is ini-

tialized to the inverse kinematics controller’s internal value
upon establishing the contact. Since x∗

contactd essentially con-
tains all the information about long-term tracking error and
state estimator drift, and the inverse kinematics will track
x∗

contactd obeying all the kinematic constraints, we can use
x∗

contactd to update the root position to match the state es-
timator’s. The inverse dynamics controller is not affected
since it ignores this term.

6.1.2. Direct Tracking and Regularization

Astate = I,

bstate = q̇∗,

where q̇∗ can be a target joint velocity or zero for regular-
ization.

6.1.3. Change in Velocity

Adq̇ = I,

bdq̇ = q̇prev,

where q̇prev is the result from the previous time step. This
term is useful to eliminate high-frequency oscillation.

6.2. Constraints

We do not impose equality constraints in the inverse kine-
matics QP. Inequality constraints mainly consist of joint lim-
its. Depending on the application, we also add constraints
in Cartesian space.

The joint limit constraints are

q− ≤ qIK + q̇dt ≤ q+,

where dt is the time step, and q− and q+ are the upper and
lower joint limit. For Cartesian space position constraints,

x− ≤ xIK + J (qIK)q̇dt ≤ x+,

where x− and x+ are the upper and lower limits. Velocity
constraints in joint space can be easily added, and Cartesian
space velocity constraints need to be transformed by the
Jacobian matrix.

6.3. Parameters

Weights are summarized in Table II. wqd is for joint velocity
tracking. wcomd and wutorsow are for CoM velocity and upper
torso angular velocity. wfootd is for foot linear and angular
velocity. wdq̇ penalizes changes in velocity. The position gain
KIK used in Eq. (4) is 2 along the diagonal for the CoM,
upper torso orientation, and foot tracking. α in Eq. (5) is
0.03. Parameters are task-dependent, but they do not change

Table II. Weights for IK cost function.

wqd wcomd wutorsow wfootd wdq̇

5 × 10−2 5 1 102 5 × 10−1

much except α for tasks that involve a very long stance phase
such as manipulation. This set of parameters is for the static
walking task on the physical robot.

7. FLOATING BASE POSITION-VELOCITY STATE
ESTIMATOR

The state estimator for the pelvis’s position and velocity
is based on Xinjilefu, Feng, Huang, & Atkeson (2014). For
a floating base humanoid, the base has three translational
and three rotational degrees of freedom. We designate the
pelvis as the base link. For the Atlas robot, there is a six-axis
inertial measurement unit (IMU) attached to the pelvis. The
IMU measures angular velocity and linear acceleration, and
it also provides an estimate of the pelvis orientation in the
world frame. We use the orientation estimate from the IMU
without modification. The pelvis state estimator estimates
the global pelvis position px and linear velocity pv . It is a
multiple model Kalman filter with contact switching. We
design a steady-state Kalman filter for each possible contact
state in advance. The current contact state is specified by
the controller. The IMU has known position and orientation
offsets relative to the pelvis origin. These offsets have al-
ready been taken into account, so the following equations
are offset-free.

The process dynamics and prediction step of the pelvis
Kalman filter are simply

x−
k =

[
p−

x,k

p−
v,k

]
= f (x+

k−1) =
[
p+

x,k−1 + p+
v,k−1�t

p+
v,k−1 + ak−1�t

]
, (6)

where xk is the state estimate. The subscript k is the step
index, and the superscript “−” and “+” represent before and
after the measurement update. The net linear acceleration of
the IMU a is transformed from the IMU frame to the world
frame using the IMU orientation. It is straightforward to
linearize the process dynamics to get the state transition
matrix Fk ,

Fk =
[
I �tI

0 I

]
. (7)

The measurement update step is slightly more compli-
cated. There is no sensor directly measuring the position
and velocity of the pelvis in world coordinates. We use the
following assumptions in place of an actual measurement:
we know the contact points, and we know how the contact
points move in Cartesian space. These assumptions are not
limited to walking, but we will use walking as an example.
Let the point of the ankle joints of the left and right feet
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be cl and cr in Cartesian space, and let the corresponding
velocities be ċl and ċr . In the double support phase (DS),
we assume the feet are not moving to obtain the following
measurements:

zk,DS =

⎡
⎢⎢⎢⎣

cl,k

cr,k

ċl,k

ċr,k

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

cl,ηl

cr,ηr

0

0

⎤
⎥⎥⎥⎦ . (8)

The time index η is the time step when the foot is detected
to be firmly on the ground using the force sensors. The first
two equations say that the current foot positions are fixed,
and the last two equations say the foot linear velocities are
zero. Essentially the first and last two equations convey the
same information: the feet are fixed. We use the redundant
information because the filter will not perform worse with
the additional information, and it may perform better.

To write the measurement equations, we need the pre-
diction to be a function of pelvis position and velocity. We
use the floating base forward kinematics FK(·):

yk,DS =

⎡
⎢⎢⎣

FKcl
(qk)

FKcr (qk)
FKċl

(qk, q̇k)
FKċr (qk, q̇k)

⎤
⎥⎥⎦ . (9)

The observation matrix Hk is computed by linearizing Eq.
(9), and it turns out to be the identity

Hk,DS = I12×12. (10)

The stance foot is assumed to be fixed in the single
support phase, so Eqs, (8), (9), and (10) are modified to
account for contact switching.

8. SIMULATION RESULTS

We first describe results from the approach used in the sim-
ulation phase of the DARPA Robotics Challenge. At that
time, the approach did not include the inverse kinematics
in the low-level controller. Our approach was tested on a
simulated Boston Dynamics Atlas robot in DARPA’s Vir-
tual Robotics Challenge setting (Figure 3). The simulation,
which used a 1 KHz control loop, is based on Gazebo, which
is produced by the Open Source Robotics Foundation. The
simulated Atlas robot has 28 joints that can be used as pure
torque sources: six for each leg and arm, three for the back
joints, and one for neck pitch. We ran the simulation in real
time on a computer with an Intel Xeon(R) CPU E5-2687W
CPU with 32G memory. Our controller used two threads.
One thread was dedicated to the low-level controller solving
inverse dynamics at 1 KHz, and the other ran the high-level
controller that optimizes the center of mass trajectory for
the next three footsteps when the robot has taken a step. As
for runtime, the high-level controller completed within 1–
50 ms (depending on terrain complexity), and the low-level
controller finished within 0.5 ms.

Figure 3. Our controller tested in simulation in the Rough
Terrain Task in DARPA’s Virtual Robotics Challenge

8.1. Flat Ground Walking

We are able to demonstrate toe-off and heel-strike behav-
ior during flat floor walking by using simple heuristics to
guide the low-level controller. For heel-strike, a desired
touch down pitch angle is specified. For toe-off, we first
change the reference point where the contact Jacobian is
computed to the toe, constrain the CoP to be at the toe, and
then specify a short but large pitch angular acceleration in
the foot frame. With these heuristics, we have achieved a
maximum step length of 0.8 m. Figure 4 shows a sequence
of snapshots taken for walking with a 0.7 m step length,
and a 0.8 s period on flat ground. The maximum speed we
achieved is on average 1.14 m/s, with a 0.8 m step and a 0.7
s period on flat ground.

8.2. Rough Terrain

The controller can handle up to 0.4 rad inclined slopes, and
it can continuously climb stair steps that are 0.2 m high
and 0.4 m apart. We are able to successfully walk on the
rough terrain environment provided in the Virtual Robotics
Challenge as well. To traverse rough terrain, an A* planner
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Figure 4. Snapshots taken for simulated walking on flat ground with 0.7 m step length and 0.8 s period

modified from Huang, Kim, & Atkeson (2013) is used to
provide sequences of foot steps, which are given as input to
the proposed controller. The high-level controller takes the
foot steps and generates desired foot and CoM trajectories
for the low-level controller to track. Figure 5 shows tracking
performance.

9. ROBOT APPLICATIONS

The full body controller with the inverse kinematics con-
troller was tested on a Boston Dynamics Atlas robot at the
DARPA Robotics Challenge Trials. Our rough terrain walk-
ing, full body manipulation, and ladder climbing controllers
all used our control approach. Figures 6, 9, and 10 show the
robot performing these three tasks.

9.1. Rough Terrain

Given the short time frame for development for the DRC
Trials and the cost of falls, we decided to use a simple static
walking strategy. The high-level desired motions such as
CoM and swing foot trajectories are generated with quintic
splines. The given foot step locations are used as knot points
for the splines. The desired CoP trajectory is generated using
a linear inverted pendulum model (LIPM). Figure 6 shows a
sequence of snapshots of the Atlas robot traversing the third

segment of the rough terrain with tilted cinder blocks. and
Figure 7 plots measured feet and CoM trajectories. Figure 8
shows CoP tracking in more detail.

In terms of operator control for walking, we pro-
vided our human operator with a live video stream from
the robot’s cameras augmented with the current swing
foot pose computed from forward kinematics, and we let
the operator “nudge” the swing foot around in the six-
dimensional Cartesian space by commanding offsets in foot
position and orientation. Once the operator was satisfied
with the foot pose, a “continue” command was given, al-
lowing the robot to lower the swing foot straight down
until ground contact was detected. We chose this approach
because we found that the operators easily understood the
robot images, and we had more trouble understanding laser
scan data. Laser scan data took time to accumulate, and they
were most accurate when the robot stood still during data
acquisition. Our goal was to avoid standing still waiting for
data. On the other hand, our approach requires substantial
input from the operator, and it extends the more risky single
support phase unnecessarily since the operator commands
were given during single support rather than double sup-
port. We plan to refine this approach in future work.

The following modifications to the full body controller
as described above were made for the walking task:
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Figure 5. Comparison of actual and desired values during simulated walking. All actual traces are plotted by solid lines, and
desired traces are shown by dashed lines. Subscripts in the legends refer to the desired traces. In (a), left foot traces are shown by
red lines, right foot by green, and CoM are plotted in blue. The reference foot points are set to the heel. Part (b) shows velocity
tracking of the CoM. In (c), actual CoM acceleration is computed by finite differencing the velocity trace, and it is truncated at
±3 m/s2

9.1.1. Ankle Torque Controlled

To fully control the center of pressure for achieving bet-
ter balancing and being more robust to perturbation, we
control the stance ankle joints in pure torque mode. In-

verse kinematics solutions for the stance ankle joints are
ignored. The disadvantage is that the ankle angle errors
propagate up the kinematic chain, and they result in signifi-
cant errors in swing foot position tracking. An integrator on

Journal of Field Robotics DOI 10.1002/rob



12 • Journal of Field Robotics—2014

Figure 6. These photos show the Atlas robot practicing for segment 3 of the terrain task for DRC. The snapshots were taken every
5 s

the desired swing foot position is used to compensate for
this,

errswing = errswing + Ki(x ′
swingd

− xswing),

x∗
swingd

= x ′
swingd

+ errswing, (11)

where x ′
swingd

is the desired swing foot position, xswing is the
computed position from forward kinematics, and x∗

swingd
is

used in the IK and ID controllers as inputs.

9.1.2. Toe-off

For static walking, the CoM needs to be completely shifted
to the next stance foot during double support. When taking
longer strides or stepping to a greater height, extending the
rear leg knee alone is often insufficient to move the CoM all
the way. Toe-off is one solution to this problem. During dou-
ble support in our controller, toe-off is triggered when the
rear knee approaches the joint angle limit (straight knee).
Once triggered, special modifications are used in both the
ID and IK controllers. We first move the rear foot refer-
ence point, where the Jacobian is computed to the toe. In
the ID controller, the contact cost term for the rear foot
is transformed to its local frame, and the row that corre-
sponds to pitch angular acceleration cost is removed. We
also constrain the allowed pitch torque to be zero. This ef-
fectively turns the rear foot contact into an unactuated pin
joint around the pitch axis. In the IK controller, we transform
the rear foot’s pitch tracking error into the foot frame and
drop the pitch term. A slightly bent rear knee angle is used

to bias the inverse kinematics toward using ankle angle for
a toe-off solution.

9.1.3. Integrator for Desired CoM Offset

During static robot experiments, the measured CoM loca-
tion, which is measured with foot force sensors, deviates
from the model’s prediction. We also believe this model-
ing error depends on the robot configuration. During the
second half of double support and the full single support
phase, we integrate this error and use it to offset the desired
CoM location so that the true CoM matches the desired.
Assuming the robot is moving slowly enough, we can ap-
proximate the true location of CoM with the measured CoP.
The integrator is set up similarly to Eq. (11).

9.2. Full Body Manipulation

During full body manipulation, the operator gives a series
of commands requesting either direct joint angles for one
or both arms or target Cartesian locations for one or both
hands. The controller itself does not try to reason about
grasping. A pool of task-specific preferred pregrasp poses
for the end-effector is manually determined offline. During
each manipulation task, the operator would pick the most
suitable pregrasp based on the situation. These commands
are used to update the desired inverse kinematics controller
position. We use equality constraints in the inverse kinemat-
ics QP formulation to enforce directly specified joint angles.
For large Cartesian motions, we transition the desired lo-
cations through splines starting at the current target and
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Figure 7. These plots show the Atlas robot traversing segment 3 of the terrain task. The X axis is the forward direction, Y points to
the robot’s left, and Z points upward. Left and right foot positions are shown in red and green lines, and center of mass is plotted
in blue. The robot walks in a straight line along y = 0 in reality. Our state estimator drifts significantly as shown in the top plot

ending at the new target. For small motions, we use the
“nudge” method as described above for precise foot place-
ment: single keyboard taps result in small instantaneous
changes in the desired position. We then use PD gains com-
paring the measured and desired positions (of hands, CoM,
etc.) to produce desired accelerations for the inverse dy-
namics. Figure 9 shows our robot turning a valve in the
DRC Trials.

We made a few small changes to the basic full body
control algorithm:

9.2.1. No Anchoring

During manipulation, we keep both feet planted and do
not take any steps. Accordingly, we do not have to worry
about the inverse kinematics position diverging from the

Journal of Field Robotics DOI 10.1002/rob



14 • Journal of Field Robotics—2014

Figure 8. The top plot shows CoP in the X (forward) direction, the middle plot shows CoP in the Y (side) direction, and the bottom
plot shows Z (vertical positions). These data were collected when the robot was stepping up the cinder block piles. Measured CoP
is plotted in solid blue. Desired CoP given by the high-level controller is shown in dashed green. ID’s output CoP is shown in
solid red. These traces are very similar. Cyan and magenta lines represent left and right foot position computed through forward
kinematics, respectively. CoP tracking is within 1 cm. The last row shows pelvis height tracking. Measured root height (state
estimator’s pelvis position) is shown by a solid blue line. Input to IK is shown by dashed green, and IK’s result is plotted in solid
red. These traces are very similar as well. Cyan and magenta lines represent left and right foot height

estimated robot position. However, the leaky integrator in
Eq. (5) can result in a failure mode characterized by a con-
stant velocity sliding of the foot. We call this failure mode
a “chase condition,” and it occurs when the contact friction
is too low to keep the feet from sliding on its own (usually
because very little weight is on one of the feet). Normally,
the foot would slide a small amount, but then the position
gains from the inverse kinematics controller prevent further
sliding. However, when we constantly update the inverse

kinematics controller to the measured position, it can then
constantly slide farther. We therefore disable this integrator
during manipulation.

9.2.2. Allowing Rotation

For some tasks, we only care about the position of the hand,
and hand orientation is unimportant. For such cases, we
can turn the weight for the hand orientation equations in
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Figure 9. The Atlas robot in full body manipulation mode
doing the valve task during the actual DRC Trials

the inverse kinematics QP to zero, or we can remove the
equations entirely. For some tasks, we can allow free rotation
around one vector, but not otherwise. For example, while
drilling through a wall, the robot can freely rotate the drill
around the drilling axis, but it must maintain its position
while keeping that axis normal to the wall. Allowing the
controller the freedom to rotate around one axis can greatly
increase the available workspace.

To allow rotation about one axis, we first construct a
basis of three orthogonal unit vectors including the desired
free-to-rotate-about axis. We then rotate the inverse kine-
matic equations concerning hand orientation into this basis
and remove the one corresponding to the specified axis.

9.3. Ladder Climbing

The underlying controller for ladder climbing is similar to
that used for manipulation. Due to Atlas’s kinematics (the
knee colliding with a tread during the climb), the robot’s
center of mass must sometimes be behind the polygon of
support, and there is a tipping moment. We chose to coun-
teract that tipping moment by grasping higher treads with
the hands. To make up for weak fingers, we built hook hands
for this purpose. The majority of the motion is scripted
ahead of time, with only the final placement of the hands
and feet controlled by the operator. For each limb, the hand
or foot is automatically moved to approximately the desired
position by placing it relative to the other hand or foot. Then,
the operator uses the keyboard to precisely place the limb
with 1 cm increments. The correct vertical height is found

automatically, using force sensors to detect contact for the
feet and position sensing when contact is known to have
already occurred for the hands. Figure 10 shows a sequence
of snapshots of ladder climbing, and Figure 11 plots mea-
sured hands, feet, and CoM trajectories during the actual
ladder task at the DRC Trials.

Once on the steps, only the toes of the feet are sup-
ported, so we adjust the CoP constraint accordingly. Having
all of the weight on the toes makes the robot vulnerable to ro-
tational slipping, causing unexpected yaw rotations. To cor-
rectly place the hands on the next step to recover from such
rotations, we must rotate the inverse kinematics solution to
match the measured orientation. We therefore periodically
rotate the IK solution such that the feet are aligned with the
measured feet orientations, allowing the robot to reorient its
upper body toward the ladder and correctly reach targets in
the real world. It would have been preferable to update the
orientation continuously, but periodic updates were easier
from a software engineering perspective. Additionally, pe-
riodic updates are less susceptible to the “chase condition”
problem described above. This reorienting serves a similar
purpose to Eq. (5), but for rotation instead of translation.
To avoid chase conditions, we disable Eq. (5) if there is not
significant (about 20%) weight on the foot.

9.3.1. Elbow Management

The robot’s shoulders are nearly as wide as the railings,
so the necessity of shifting weight from side to side re-
sults in a significant danger of bumping the arms on the
railings. We avoid such collisions by estimating the railing
location based on the hand location (based on the assump-
tion that the hand is pushed up against the side of the step)
and adding inequality constraints to the inverse kinemat-
ics quadratic program. The inequality constraints limit how
far outward each elbow can move in the lateral direction.
Additionally, when we wish to intentionally lean on the rail-
ing, we provide a desired elbow location (only in the lateral
direction) with a low weight. To prevent becoming over-
constrained by elbow management, we use low weights for
commanding hand orientation. Specifically, we rotate the
hand orientation equations into a basis containing the hand
axis, a pitchlike vector, and a yawlike vector. We use a very
low but nonlinear weight for rotation about the hand axis
(roll-like), allowing it to roll about 45 degrees nearly freely,
but preventing it from rolling much farther.

9.3.2. Hand to CoM Integration

Our robot model had inaccurate forward kinematics. One
result is that if the hands are resting on one step and the
robot steps up one rung on the ladder, even though the
true position of the hands will not have moved, the mea-
sured position will have moved several centimeters. If not
accounted for, this will push the CoM far from the desired
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Figure 10. These photos show the Atlas robot climbing the top half of the same ladder as used in DRC. The snapshots were
taken every 13 s. The top row shows repositioning of the hook hands, and the bottom row shows stepping up one tread. Most of
the climbing motions are scripted. After each limb’s rough repositioning, the operator can adjust its final position with “nudge”
commands that are small offsets in Cartesian space

location, eventually resulting in failure. We therefore intro-
duce an integrator that gradually adjusts the desired posi-
tion of both hands in the horizontal plane based on the de-
viation between the measured and desired CoM position.
Essentially, we are using the arms to pull or push the CoM
into the desired position. To avoid unintentionally rotating
the robot, this integrator is only active while both hands are
in contact with the step (not during hand repositioning).

10. DISCUSSION AND FUTURE WORK

One contribution with this work is demonstrating that we
can use online multilevel optimization to tackle a wide
range of practical humanoid problems. By decomposing
into a simplified behavior level controller that only reasons
about relevant aspects of a task, and a generic low-level full
body controller that tracks the high-level commands while
filling in the details, we can focus on designing high-level
controllers and rapidly develop for several applications si-
multaneously. On the other hand, we did not push for task
level autonomy in the DRC Trials. Most of our desired high-

level trajectories are manually scripted offline, and simply
played back on the robot using the controller, which ignores
most of the external environment. For the DRC in 2015,
we are working on integrating autonomous perception and
planning (Berenson, Srinivasa, Ferguson, & Kuffner, 2009) to
generate more intelligent high-level trajectories and avoid
collisions.

Reasoning about CoM motion alone appears to be suffi-
cient to guide the inverse dynamics controller through mod-
erate rough terrain with height and surface normal changes.
We were surprised that taking into account angular momen-
tum or swing leg dynamics in the high-level model was not
necessary. Another interesting discovery is that explicitly
adding toe-off and heel-strike is easy. We have shown that,
with a very straightforward design, we can achieve these
behaviors and push step length and walking speed closer
to those of humans in simulation.

The current walking controller does restrict the upper
body to a predefined policy for its orientation. On the other
hand, we believe freeing the upper body and utilizing its
angular momentum will drastically increase the stability
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Figure 11. These two plots show the Atlas robot climbing the first five treads during the actual run at the DRC Trials. The X axis
is the forward direction, Y points to the robot’s left, and Z points upward. Left and right foot positions are shown with red and
green solid lines, and left and right hand positions are plotted with cyan and magenta dashed lines. The center of mass is shown
with a solid blue line

margin, especially in the single support phase. The current
walking controller is also maintaining constant CoM height
throughout the entire walking cycle when on level ground,
which is undesirable for balancing or agility. An immediate
line of research is to expand the point mass model to a more
sophisticated one. We can include angular momentum

and orientation (Whitman, Stephens, & Atkeson, 2012)
and swing leg dynamics. We can also use a dead-beat
controller for the 3D spring loaded inverted pendulum
(SLIP) model (Wensing & Orin, 2013b; Wu & Geyer, 2013) as
the high-level controller to capitalize on extensive research
of robust running and walking using a 3D SLIP model. We
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will explore including the foot step locations and timing
as part of the trajectory optimization. These choices can be
treated as parameters in DDP, and they can be optimized
along with the trajectory. The foot step planner would
output footstep cost functions, and the trajectory optimizer
would have the freedom to pick the foot steps that are the
most suitable. This is one way to have the footstep planner
implicitly take robot dynamics into consideration.

Our low-level controller only greedily optimizes for
the current time step given a set of desired values to track.
We could potentially add some form of value function as
part of the optimization criteria to incorporate a notion of
the future similar to Kuindersma et al. (2014). One way to
generate this value function is to perform full body DDP on
a periodic walking pattern (Liu, Atkeson, & Su, 2013). We
can also utilize the value function from the CoM trajectory
optimization part.

In general, we find that inverse dynamics plays an im-
portant role for heavily loaded joints such as the stance leg,
particularly the ankle joints for a precise center of pressure
control. However, on lightly loaded limbs (e.g., swing leg
or arms), friction and unmodeled dynamics tend to dom-
inate the rigid-body model torques that inverse dynamics
produces, so inverse kinematics is more helpful for swing
leg and arm tracking. We considered explicitly switching
between control modes as the contact state changed, but the
switching transients are hard to manage. Performing both
inverse dynamics and inverse kinematics concurrently for
all joints eliminated the switching issue, and we found that
the appropriate control mode dominates at the appropriate
time. In comparison, another approach is to solve inverse
dynamics alone and integrate desired accelerations into de-
sired velocities and positions. When faced with substantial
modeling errors and delays, this approach can easily lead
to inaccurate behaviors. We think one principled approach
to resolve this issue is to implement Receding Horizon Con-
trol with the full dynamic model similar to Tassa, Erez, &
Todorov (2012) and Erez et al. (2013), which is close to, but
not yet computationally tractable for implementing on a
robot in a real-time setting.

Since our full body controller decouples inverse dy-
namics and inverse kinematics into two independent
quadratic programs, consistency becomes a concern. We
can introduce additional terms in the cost function of the
inverse kinematics to bias solutions toward accelerations
computed by inverse dynamics. This method, when taken
to its extreme, is equivalent to just integrating the accel-
eration. Empirically, results from both quadratic programs
are consistent with each other when the overall controller
is tracking the desired trajectory well, since the high-level
commands are always consistent. On the other hand, when
either is unable to track the desired trajectory due to con-
straint violation, the other is often unaware of the situation.
For example, if the inverse dynamics controller is unable
to produce the desired CoM acceleration due to limited

ground forces because of friction cone constraints, the CoM
will start diverging from the desired trajectory. However,
such constraints are not implemented in the inverse kine-
matics controller, and it will keep tracking the desired CoM
velocity. Once the divergence starts, the inverse dynamics
controller will demand more CoM acceleration because of
the increasing position error, which is impossible to achieve
because of the constraints. Since both the ID and IK con-
trollers are local greedy optimizers, they do not have the
ability to correct this problem alone. We expect that a suc-
cessful solution to this problem will involve the high-level
controller foreseeing and preventing these situations by
considering both kinematic and dynamic constraints dur-
ing the planning stage.

Due to the tight time line for the DRC Trials, we have
not conducted systematic system identification procedures
on the robot. We hope to increase the quality of both kine-
matic and dynamic models in the near future. As a matter of
fact, all the leg joint level sensing on the Atlas robot, such as
positioning, velocity (numerically differentiated from posi-
tion), and torque, are pretransmission. This hardware de-
sign choice reduces jitter in the low-level joint control, but
it introduces problems for forward kinematics and torque
control. Better state estimation is necessary to achieve more
accurate position tracking and force control.

11. CONCLUSIONS

We have designed a full body controller for a full size
humanoid robot with online optimization. A high-level
controller guides the robot with trajectories that are op-
timized online using simplified models. A low-level con-
troller solves full body floating base inverse dynamics and
inverse kinematics by formulating each as a quadratic pro-
gramming problem. Inverse dynamics provides us with a
tool to perform compliant motions and dynamic behaviors.
Inverse kinematics helps us to battle modeling errors, and
it makes the overall controller applicable to real hardware.
The controller was successfully tested on the Atlas robot
in rough terrain walking, ladder climbing, and full body
manipulation in the DARPA Robotics Challenge Trials.
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Vukobratović, M., & Borovac, B. (2004). Zero-moment point—
Thirty five years of its life. International Journal of Hu-
manoid Robotics, 01(01), 157–173.

Wampler, C. (1986). Manipulator inverse kinematic solutions
based on vector formulations and damped least-squares
methods. IEEE Transactions on Systems, Man and Cyber-
netics, 16(1), 93–101.

Wensing, P., & Orin, D. (2013a). Generation of dynamic
humanoid behaviors through task-space control with
conic optimization. In IEEE International Conference on
Robotics and Automation (ICRA) (pp. 3103–3109), Karl-
sruhe, Germany.

Wensing, P., & Orin, D. (2013b). High-speed humanoid run-
ning through control with a 3d-slip model. In IEEE/RSJ
International Conference on Intelligent Robots and Sys-
tems (IROS) (pp. 5134–5140), Tokyo, Japan.

Whitman, E. (2013). Coordination of multiple dynamic pro-
gramming policies for control of bipedal walking. Ph.D.
thesis, The Robotics Institute, Carnegie Mellon University,
Pittsburgh, PA.

Whitman, E., & Atkeson, C. (2010). Control of instantaneously
coupled systems applied to humanoid walking. In 10th
IEEE-RAS International Conference on Humanoid Robots
(Humanoids) (pp. 210–217), Nashville, TN.

Whitman, E., Stephens, B., & Atkeson, C. (2012). Torso rota-
tion for push recovery using a simple change of variables.
In 12th IEEE-RAS International Conference on Humanoid
Robots (Humanoids) (pp. 50–56), Osaka, Japan.

Wu, A., & Geyer, H. (2013). The 3-D spring-mass model reveals
a time-based deadbeat control for highly robust running
and steering in uncertain environments. IEEE Transactions
on Robotics, 29(5), 1114–1124.

Xinjilefu, X., Feng, S., Huang, W., & Atkeson, C. (2014). De-
coupled state estimation for humanoids using full-body
dynamics. In IEEE International Conference on Robotics
and Automation, Hong Kong, China.

Zapolsky, S., Drumwright, E., Havoutis, I., Buchli, J., & Semini,
C. (2013). Inverse dynamics for a quadruped robot loco-
moting along slippery surfaces. In International Confer-
ence on Climbing and Walking Robots (CLAWAR), Syd-
ney, Australia.

Journal of Field Robotics DOI 10.1002/rob




