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Abstract— This paper presents an optimal controller for an
Instantaneously Coupled System (ICS) which was designed by
coordinating multiple lower-dimensional optimal controllers.
We augmented subsystems of the ICS with coordination vari-
ables, and then used value functions to coordinate the aug-
mented subsystems by managing tradeoffs of the coordination
variables. We apply this method to humanoid walking and
present a controller for a 3D simulation that uses multiple
coordinated policies generated using Dynamic Programming.
Additionally, we present simulated walking perturbation ex-
periments as well as standing balance results from a force-
controlled humanoid robot.

I. INTRODUCTION

A humanoid robot should be able to operate in the pres-

ence of large disturbances. This paper proposes a method of

control for bipedal walking that is capable of responding im-

mediately to unexpected disturbances by modifying center of

mass (CoM) motion, footstep location, and footstep timing.

We use dynamic programming (DP) to design a nonlinear

controller for a simple model of a biped. DP suffers from

the “Curse of Dimensionality”, with storage and computation

costs proportional to Rd , where R is the grid resolution and d
is the dimension of the state. However, breaking the control

design problem into parts greatly reduces the storage and

computation costs. For example:

Rd/2 +Rd/2 << Rd . (1)

By breaking the model into multiple subsystems of

lower dimensionality, we are able to work with a higher-

dimensional model than would otherwise be computation-

ally feasible. To capture the coupling between the subsys-

tems while keeping them low-dimensional, we augment the

subsystems with additional coordination variables. We use

dynamic programming to produce optimal policies and value

functions for each of the augmented subsystems. Then, by

using the value functions to manage tradeoffs between the co-

ordination variables, we coordinate the subsystem controllers

such that the combined controller is optimal. Finally, we

use the output of this high-level controller (CoM and swing

foot accelerations) as the input to a low-level controller,

which provides the joint torques necessary to produce those

accelerations.

E. C. Whitman and C.G. Atkeson are with the Robotics Institute,
Carnegie Mellon University, 5000 Forbes Ave, Pittsburgh, PA, USA. ewhit-
man@cmu.edu, cga@cmu.edu

An accompanying video can be found at
http://www.contrib.andrew.cmu.edu/˜ewhitman/humanoids2010.avi

Fig. 1. The Sarcos Primus hydraulic humanoid robot (left) and the
simulation based on it (right).

A. Related Work

The central problem faced by walking controllers is man-

aging reaction forces, which are constrained by friction and

the requirement that the center of pressure (CoP) be within

the convex hull of the region of support. Many walking

controllers focus on CoM motion. A standard method of

control is to first generate a CoM trajectory and then track

that trajectory with inverse kinematics [1]. Preview control

of the CoP can be used to generate CoM trajectories [2].

By modifying the inverse kinematics for force control, it is

possible to deal with small disturbances [3].

Unfortunately, even when tracking an optimal trajectory,

the resulting controller is only optimal when near the desired

trajectory, which is not the case following a significant un-

expected disturbance. Due to constraints on reaction forces,

linear independent joint controllers often can stabilize only

a small region of state space. It is possible to frequently

recalculate the CoM trajectory, taking into account the

current robot state [4]. Model Predictive Control (MPC)

and receding horizon control offer methods of generating

trajectories online that continuously start from the current

robot state [5].

For the system to recover from large disturbances, it is

necessary to modify the reaction force constraints by adjust-



ing the footstep placement or timing. One possible approach

to this is trajectory libraries, where multiple trajectories

are generated in advance and an appropriate one is used

depending on the current robot state. Examples of trajectory

libraries are given for standing balance in [6] and for walking

in [7]. It is also possible to modify MPC so that it determines

foot placement online [8]. In [9], the footstep timing is

modified online in response to manually changed footstep

locations.

Because of many walkings systems’ high-dimensionality,

which makes control difficult, it is common to model parts of

a walking system as decoupled so that the lower-dimensional

subsystems can be controlled separately [10], [11]. PD servos

on individual joints is a very basic form of such decoupling.

Unless coordination is handled carefully, the combined con-

troller will be sub-optimal because the subsystem controllers

lack the information necessary to make optimal decisions.

We present a method of coordination that produces an

optimal combined controller.

In Section II, we propose the concept of Instantaneously

Coupled Systems (ICS) and demonstrate that our method

for coordinating multiple optimal subsystem controllers is

equivalent to an optimal controller for the full system. We

then model walking as an ICS in Section III and describe

our walking controller in Section IV. We present simulated

walking results in Section V and preliminary hardware re-

sults consisting of standing balance perturbation experiments

on our Sarcos humanoid robot (pictured in Fig. 1) in Section

VI. Sections VII and VIII offer a discussion and conclusion.

B. Dynamic Programming

The high-level controllers in this paper are generated

using Dynamic Programming (DP) because in addition to

providing policies that are valid for a large region of state

space, DP also provides value functions, which we need for

coordination. Value functions represent the future cost of

starting in a particular state and following a given policy.

Another major advantage of DP is that it can easily handle

discrete decisions such as whether or not to touch down,

allowing simultaneous optimization of trajectory, footstep

timing, and footstep placement. Additionally, DP is useful

for optimizing transient responses to perturbations as well

as optimizing steady state gait. It is also globally optimal

(up to the grid resolution), avoiding potential problems with

local minima. In [12], DP on the Poincaré state was used to

determine stride-level variables. DP was used for continuous

control of some joints in [10] and of all joints in [13].

In the version of DP used in this paper, we divide the state

space into a grid. We then iteratively solve for a steady state

policy, u(x), and value function, V (x), at each point in the

grid in discrete time using

u(x) = argmin
u
(L(x;u)+ cV ( f (x;u))) (2)

V (x) = L(x,u(x))+ cV ( f (x,u(x))), (3)

where x is the state, c is the discount factor, L(x,u) is the one

step cost function, and xN+1 = f (xN ,u) is the dynamics. The

discount factor is a constant slightly less than 1.0 necessary

to make the value function converge for periodic systems

that do not have a zero-cost limit cycle. In each iteration,

for each grid point, we use (2) to pick a new action, u(x),
from between only two choices: the current best action and

a random action [14]. We then use (3) to update the value

function accordingly. We iterate this procedure until the value

and policy converge to a global optimum.

II. CONTROLLING INSTANTANEOUSLY

COUPLED SYSTEMS

For a certain type of system, which we call Instanta-

neously Coupled Systems (ICS), it is possible to construct an

optimal controller by coordinating multiple optimal lower-

dimensional controllers. First, subsystems are augmented

with coordination variables, which provide enough informa-

tion to account for coupling to other systems. Then, value

functions are used to trade off the coordination variables.

This is useful because it reduces an optimal control prob-

lem to several lower-dimensional optimal control problems,

which can be solved more easily.

A. Instantaneously Coupled Systems

We define an instantaneously coupled system (ICS) as a

dynamic system made up of a set of N lower-dimensional

systems. The state of, x f , and input to, u f , the full system

are given by the composition of the states of and inputs to

the lower-dimensional systems,

x f = {x1,x2, ...,xN} (4)

and

u f = {u1,u2, ...,uN}. (5)

The dynamics of each system evolve independently,

ẋi = fi(xi,ui). (6)

At M specific instants, however, the systems may be

coupled such that the dynamics of the subsystems instan-

taneously depend on the full state,

x+i = f c
i (x

−
f ,ui), (7)

where the superscripts − and + indicate before and after the

coupling event.

The time of the coupling, t j, is determined by some

condition on the full state:

Φ(x f (t j)) = 0 (8)

There can be one or multiple coupled instants. We only

consider systems with a finite number, M, of coupled in-

stants.

B. Obtaining the Optimal Policy

For an ICS with a cost function of the form

C =
∫ N

∑
i=1

Li(xi(t),ui(t))dt +
M

∑
j=1

(
g(t j)+h(x f (t j))

)
, (9)



we can construct the optimal policy by finding the optimal

policies and value functions for augmented versions of the

subsystems and then combining them. Costs of coupling

event times and state (g and h) are optional and are not

used by the controller presented in this paper.

First, we define a coordination state, xc, as some set of

features of the full state, xc = Θ(x f ). The features, xc, are a

compact means of communicating the essential information

about the full state between the subsystems, and must be

selected such that it is possible to:

I. Rewrite the coupling dynamics (7) as

f c
i (x f ,ui) = f̃ c

i (xi,xc,ui). (10)

II. Rewrite the last term in (9) as

h(x f (t j)) = h̃(xc(t j)). (11)

III. Rewrite (8) as the intersection of conditions on the

low-dimensional systems

Φ(x f (t)) = Φ1(x1(t),xc(t))∩ ...∩ΦN(xN(t),xc(t)).
(12)

It is always possible to choose xc = x f , but this method

will be more useful if an xc that is lower-dimensional than

x f can be found.

Next, we construct the decision space, xd , by composing

t j and xc(t j) from each of the coupled instants.

xd = {t1,xc(t1), t2,xc(t2), ..., tM,xc(tM)} (13)

If we hold xd constant, the subsystems are completely

decoupled and the conditions from (12) are constraints:

Φi(xi(t j),xc(t j)) = 0. (14)

With the systems decoupled, we can individually optimize

each one with respect to

Ci =
∫

Li(xi(t),ui(t))dt, (15)

the only part of (9) that depends on the ith system. It then

remains only to optimize over all possible choices of xd and

select the best one.

To accomplish this, we augment the state of each of the

subsystems with x̂d ,

x̂d = {t̂1,xc(t1), t̂2,xc(t2), ..., t̂M,xc(tM)} (16)

t̂ j = t j − t (17)

which has the trivial dynamics ˙̂t j = −1 and ẋc = 0. This

allows us to generate subsystem controllers that can apply the

coupling dynamics (10) and know when to do so. We switch

from the time of coupling in xd to the time until coupling

in x̂d to eliminate the dependence on time in our subsystem

controllers. We then produce optimal (with respect to (15))

policies and value functions for each of the augmented

systems subject to (14). Any method that produces both

policies and value functions can be used, but in this paper,

we use dynamic programming.

Now, if we have an x f , we can hold each of the xi’s

constant and get the value as only a function of xd . This

allows us to rewrite (9) as only a function of xd , t, and x f :

C =
N

∑
i=1

Vi(xd , t|xi)+ k(xd) (18)

where k(xd) = ∑M
j=1 g(t j)+ h̃(xc(t j)). We then select the best

decision state,

x∗d = argmin
xd

C(xd , t,x f ). (19)

Having selected xd , we can look up each of the ui’s from

the individual optimal policies and compose them to form

u f according to (5).

III. WALKING AS AN ICS

To generate a walking controller, we first approximate

walking as an ICS. Summing the forces and torques on the

system gives us dynamics equations for the CoM

fL + fR + fg = mc̈ (20)

(pL − c)× fL + τL +(pR − c)× fR + τR = l̇ (21)

where c, pL, and pR are the positions of the CoM, left and

right feet, fL, fR, τL, and τR are the reaction forces and

torques generated at the feet, fg = [0,0,−g]T is the force

of gravity, m is the mass, and l is the angular momentum.

Since the absolute position is rarely relevant, it is useful to

place the origin of the coordinate system at the stance foot

so that the CoM location, c, and the swing foot location, pw,

are defined relative to the stance foot. During double support,

the foot that will be in stance next is considered the stance

foot. It is also useful to define the total reaction force and

torque as follows:

f = fL + fR
τ = τL + τR.

(22)

During single support, the swing foot cannot generate

reaction force, so one of the pairs of force and torque must

be zero. If we then constrain our policy such that l̇ = 0 and

c̈z = 0, (20) and (21) simplify to the well-known Linear

Inverted Pendulum Model (LIPM) [15] [16]. We further

constrain the dynamics with ċz = 0 and cz = h and write

the LIPM dynamics as

c̈x = cx
g
h
+

τy

mh
(23)

c̈y = cy
g
h
+

τx

mh
. (24)

We model the swing leg as fully controllable and treat the

acceleration of the swing foot, p̈w, as a control variable.

During double support, there is no swing foot to accelerate,

but the horizontal CoM acceleration depends on how the

weight is distributed between the two feet, which we define

as

w =
fL,z

fL,z + fR,z
. (25)

We assume that we can select w during double support such



that

c̈x =
τy

mh
(26)

c̈y =
τx

mh
. (27)

Equations (26) and (27) are approximations because they

require that both

w =
cx −pL,x

pR,x −pL,x
(28)

and

w =
cy −pL,y

pR,y −pL,y
. (29)

It is only possible to simultaneously satisfy (28) and (29)

if the CoM is directly above the line between the two feet.

However, this approximation is small because the CoM is

usually near this line during double support, double support

is brief, and the low-level controller can often fix some of the

discrepancy by adjusting τ . This approximation is necessary

because it allows us to decouple the sagittal and coronal

dynamics, and it is useful because it allows us to calculate

the CoM acceleration without knowing the position of both

feet.

These dynamics constitute a 5 degree of freedom (DoF)

ICS with a 10-dimensional state space (position and velocity

for each DoF),

x f = {cx, ċx,cy, ċy,pw,x,
ṗw,x,pw,y, ṗw,y,pw,z, ṗw,z} (30)

and a 5-dimensional action space (one for each DoF),

u f = {τy,τx, p̈w,x, p̈w,y, p̈w,z}. (31)

We can then partition the state and action space into 5

subsystems, one for each DoF:

xs = {cx, ċx} us = {τy}
xr = {cy, ċy} ur = {τx}
xx = {pw,x, ṗw,x} ux = {p̈w,x}
xy = {pw,y, ṗw,y} uy = {p̈w,y}
xz = {pw,z, ṗw,z} uz = {p̈w,z}

(32)

where the subscripts, s, r, x, y, and z, refer to the sagittal

stance, coronal stance, swing-x, swing-y, and swing-z sub-

systems.

The systems are only coupled during stance transitions

(touch down and lift off). We choose a common state

that describes the horizontal location of the swing foot,

xc = {px,px}. In order to keep the decision state, x̂d , low-

dimensional, we consider only the next transition (M = 1)

and make assumptions about all future transitions. This gives

us a decision state of

x̂d = {tt ,xtd ,ytd} (33)

where tt is the time until transition, and {xtd ,ytd} is the

location where the swing foot will touch down. For lift

off transitions, xtd and ytd can be omitted. The stance

subsystems assume that subsequent transitions will have the

nominal timing (0.1 second double support and 0.4 second

single support), but that they will be able to select future

touchdown locations. The swing subsystems assume that

subsequent transitions will have nominal values from steady

state walking. Fig. 2 shows tt as a function of time for

the walking simulation starting from rest and accelerating

to steady state walking at 0.56 m/s. During single support,

it is convenient to refer to tt as time until touchdown, ttd .
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Fig. 2. Time until transition, tt versus time. To reduce computation, policies
are only computed for tt < 0.2 during double support.

This selection of xc and the resulting x̂d allows our

subsystem controllers to determine the optimal action for

all possible choices of footstep timings and locations. The

value functions can then be used to determine which choice

of these variables is optimal for the full ICS.
We minimize the cost function

C =
∫
(w1τ2

x +w2τ2
y +w3(ċx − vdes)

2 +w4(cy −wh)
2+

w5(pw,z −h f c)
2 + p̈T

wW6p̈w)dt
(34)

subject to the constraint that

pw(ttd = 0) = {xtd ,ytd ,0}. (35)

The values w1 through w5 are weighting constants, W6 is a

diagonal weighting matrix, wh is half the width of the hips,

and h f c is the nominal foot clearance height.
Note that (34) has the form of (9) and that (35) can be

decoupled as in (12). This model of walking thus meets all

the criteria of an ICS. If we omit the dimensions of x̂d that do

not affect the dynamics, the original 10-dimensional system

is equivalent to a coordinated set of one 3-dimensional

system and four 4-dimensional systems.

IV. WALKING CONTROLLER

We use the principle of an ICS to generate a walking

controller for a simulated biped based on our Sarcos Primus

System [17] [18] hydraulic humanoid robot with force-

controlled joints. The simulation is of approximately human

size (CoM is 1.0 m high when standing straight) and mass

(78 kg). It is a 3D 5-link (torso and two 2-link legs) rigid

body simulation with 16 degrees of freedom: 6 to locate and

orient the torso as well as 3 at each hip and 1 at each knee. It

is controlled by 12 torque controlled joints: 3 at each hip, 1

at each knee, and roll and pitch actuation between each point

foot and the ground. The CoP constraint of a finite-size foot

is simulated by enforcing

|τx| ≤ w f fz
|τy| ≤ l f fz

(36)



on each foot where w f = 0.05m and l f = 0.1m are approxi-

mately half the width and length of a human foot. Friction

(coefficient of friction is μ = 0.5) is modeled as a spring and

damper between the foot and the ground. When the friction

cone, √
f2
x + f2

y

fz
< μ, (37)

or yaw torque constraint,

τz

fz
< μr, (38)

is violated, slipping is modeled by resetting the rest position

of the spring.
We use coordinated DP polices to produce an optimal

controller for the ICS described in Section III. This functions

as our high-level controller, providing input CoM and swing

foot accelerations to a low-level controller, which outputs

joint torques.

A. High-Level Control
1) Pre-Computation: Policies and value functions are

generated for each of the five subsystems using dynamic

programming. A discount factor of 0.9995 is used, which

corresponds to costs fading to half importance after 1.4

seconds (nearly 3 steps).
For the swing-z system, the dynamics are not affected by

xtd or ytd , so it is sufficient to generate a policy on the 3-

dimensional state space of {pw,z, ṗw,z, ttd}. The touch down

constraint is enforced by switching to a special controller

for ttd < 0.03 s, which applies whatever acceleration is

necessary to touch down at the right time and returns a value

determined by the magnitude of the necessary acceleration.

An analytic controller is necessary because the magnitude of

the gradient of the optimal controller approaches infinity as

ttd approaches zero. As a result, the policy can not be well

represented by a grid for small ttd .
The swing-x system is affected by xtd . However, by shift-

ing the reference frame and redefining the state as {pw,x −
xtd , ṗw,x, ttd}, we have a system with the same dynamics and

cost function as the original, but only a 3-dimensional state

space. The constraint, pw,x−xtd = 0 when ttd = 0, is enforced

similarly to the swing-z system. The swing-y system can be

made 3-dimensional by a similar shift in reference frame.
These five DP policies (three 3-dimensional and two

4-dimensional policies) are equivalent to a single 10-

dimensional DP policy for the entire ICS. If we use a

resolution of 100 states per dimension, the coordinated

version uses 2.3×108 states as opposed to 1.0×1020 states

for the equivalent single policy. Computing the DP policies

is computationally intensive and can take on the order of

a day for our 4-dimensional policies. They are computed

before use, and this computation does not affect the run-time

performance of the controller.
2) Run-Time Computation: At run time, we combine the

value functions to obtain x∗d as in (19). During double

support, the argmin operation is only a 1-dimensional search,

so it can be performed by a fine resolution brute force

search. During single support, however, the search space

is 3-dimensional, and brute force search is computationally

expensive. To speed up the search, we note that all five value

functions depend on ttd , but that only 2 each depend on

xtd and ytd , and that none of the value functions depend on

both xtd and ytd . We wish to first find x∗td(ttd) and y∗td(ttd),
so that we can then perform a 1-dimensional search over

V (ttd |x∗td(ttd),y∗td(ttd),x f ).

To do this, we approximate the value functions (during

pre-computation) in such a way that they can be added

quickly and that x∗td(ttd) and y∗td(ttd) of the sums can be found

analytically. For the coronal and swing-y value functions, we

approximate the value function, V (ttd ,ytd |xi), with a series of

parabolic approximations to V (ytd |ttd ,xi) for evenly spaced

values of ttd . Each parabola is created by placing the vertex

at the minimum of V (ytd |ttd ,xi) and using a point to either

side to estimate the second derivative. Two surfaces can then

be added quickly by adding the parabolas, and x∗td(ttd) is

simply the location of the vertex of the sum. Fig. 3 shows

an example surface approximation.
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Fig. 3. The coronal stance value function, V (ttd ,ytd |cy = 0.08, ċy = 0),
from the DP tables (top) and from the parabolic approximation (bottom).
The red line shows y∗td(ttd). The dots show the points used to generate the
parabolic approximation, and the horizontal black lines show the location
of the parabolas.

The same is done with the sagittal stance and swing-x

value functions, using xtd instead of ytd . With the value

functions reduced to only a function of ttd as shown in Fig.

4, they can be quickly added and searched for t∗td . Then, we

can look up x∗td(t
∗
td) and y∗td(t

∗
td). Having determined x̂d , we

can now look up the appropriate controls from the individual

policies.
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B. Low-Level Control

The output of the high-level controller is the desired

horizontal CoM acceleration, c̈x,des and c̈y,des, as well as the

desired swing foot acceleration p̈w,des. The objective of the

low-level controller is to generate joint torques which will

achieve these accelerations as well as enforce the constraints

assumed by the high-level control, cz = h and l̇ = 0.

It is important to note that the high-level controller does

not generate trajectories. Instead, it maps directly from

system state to desired accelerations without maintaining

any controller state. This allows it to react to perturbations

and accumulated modeling error in real time, but it also

means that we do not have desired positions or velocities,

which precludes the use of traditional trajectory tracking

techniques. In the place of trajectory tracking, we use a form

of inverse dynamics to generate joint torques. The feedback

gains of our controller are embedded in the gradients of the

high-level DP policies.

We use PD controllers to enforce the cz = h constraint and

maintain a desired torso orientation, giving us c̈z,des and the

desired total moment. It is then straightforward to compute

the desired total reaction force, f, and torque, τ . During

double support, we divide the total reaction force between

the two feet while enforcing the CoP (36) and friction (37),

(38) constraints by minimizing

C =
f2
L,x

fL,z
+

f2
R,x

fR,z
+

f2
L,y

fL,z

f2
R,y

fR,z
+

a

(
τ2

L,x

fL,z
+

τ2
R,x

fR,z
+

τ2
L,y

fL,z

τ2
R,y

fR,z

)
.

(39)

This cost function has the useful property that it produces

the same CoP offset for both feet, ensuring that there is as

much margin as possible between the CoP and the edge of

the foot.

We then use Dynamic Balance Force Control (DBFC) as

presented in [19] to generate joint torques, τ j. DBFC uses a

weighted pseudo-inverse with regularization to solve[
M(q) −S
J(q) 0

](
q̈
τ j

)
=

(
N(q, q̇)+J(q)f̂
−J(q)q̇+ ¨̂p

)
(40)

where q is a vector of base coordinates and joint angles,

M(q) is the mass matrix, J(q) is the Jacobian of both

feet, S = [0,I] selects the actuated elements of q, f̂ =

[fL
T,τL

T, fR
T,τR

T]
T

, and ¨̂p = [p̈T
L , p̈T

R ]
T

.

Since we do not use PD joint torques in addition to the

DBFC output, even small errors in the foot acceleration pro-

duced can accumulate over time. In order to more accurately

match desired foot accelerations, we add an integrator on foot

acceleration,

p̈w,int =
∫
(p̈w,des − p̈w)dt, (41)

which we add to the desired foot acceleration, p̈w,des, used

by DBFC. The integrator is not necessary for stable walking,

but it significantly improves the robustness to perturbations.

V. ROBUSTNESS AND SPEED CONTROL

An important characteristic of any controller is its ability

to reject perturbations. In particular, the size of the largest

perturbation that does not cause the system to fail is a

useful metric for systems where failure is well defined. One

practical difficulty with using this as a metric of performance

for walking is that the result of a perturbation depends on

the timing, location, and direction of the perturbation.

Fig. 5 shows the walking pattern produced by a push

of 30 Newton-seconds (N-s) to the left (0.38 m/s change

in the CoM velocity), and Fig. 6 shows the effect of push

angle and timing on the maximum survivable perturbation.

Force perturbations lasting 0.1 seconds are administered to

the torso CoM at various angles while the system is walking

with an average speed of 0.56 m/s. Data is shown in Fig.

6 for perturbations beginning at increments of 0.1 seconds

after the left foot lifts off.

Walking speed can be changed by switching the sagittal

stance policy to one computed with a different vdes. The

policies are global, so no transition is necessary, and the

policies can be switched at any point during the step.

Similarly, the system can start from rest and achieve steady

state walking without switching policies. Fig. 5 shows the

walking pattern produced by switching speeds, and Fig. 7

shows how the velocity varies after changing policies.

VI. PRELIMINARY HARDWARE RESULTS

We implemented a version of our controller for standing

balance on the Sarcos Primus System humanoid robot with

force-controlled hydraulic joints. Results of standing pertur-

bation experiments in which we pushed the robot are shown

in Fig. 8. Pushes were administered to the back of the torso

and measured by a force sensor in the pushing implement.

We model the CoM dynamics of standing using the LIPM.

We place the origin of our coordinate frame halfway between

the feet and use the dynamics in (23) and (24) to model the
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Fig. 5. Walking data, starting from rest. At the 5th step it is pushed to the left with a 30 Ns impulse. After 5 seconds, it switches from vdes = 0.63 to
vdes = 0.25.

−50 0 50

−80

−60

−40

−20

0

20

40

60
Forward   Push

Rightward
Push

Leftward
Push

Lateral Impulse (N−s)

Fo
rw

ar
d 

Im
pu

ls
e 

(N
−s

)

t=0.0
t=0.1
t=0.2
t=0.3
t=0.4

Fig. 6. Polar plot of the maximum survivable perturbation of our walking
simulation as a function of angle and time. Data is shown for perturbations
occuring at various times after left foot lift off. A point represents the
maximum survivable perturbation in a given direction. Concentric circles
are in increments of 10 Newton-seconds.
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Fig. 7. Forward speed as the sagittal stance policy is changed. Starts
from rest with vdes = 0.63, switches to vdes = 0.25 after 5.0 seconds, and
to vdes = 0.5 after 10.0 seconds.

horizontal motion of the CoM. Our controller attempts to

minimize the one step cost function

L = τ2
x + τ2

y + x2 + y2. (42)

Unlike walking, standing has no stance transitions, so the

sagittal and coronal motion are completely decoupled. Addi-

tionally, we need not consider a swing leg. We can there-

fore produce a high-level controller by coordinating two

2-dimensional policies (a policy for each horizontal axis

defined over CoM position-velocity space). Since they are

completely decoupled, no decision state is required. The

desired CoM accelerations produced by this controller are

then used by the low-level controller described in Section

IV-B to generate low-level joint torques.
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Fig. 8. Standing balance perturbation experiments on the Sarcos humanoid
robot for two forward pushes.

VII. DISCUSSION AND FUTURE WORK

The controller’s current version strives to maintain a

desired torso orientation, but it does not otherwise address

angular momentum. Manipulation of angular momentum,

however, can be useful for recovering from large perturba-

tions, as rotational accelerations cause a temporary shift in

the CoM without moving the center of pressure [20].

By avoiding pre-planned trajectories, our controller can

react immediately to unexpected perturbations. It selects a

new time and location of touchdown at every control cycle

(currently 400 Hz). In the sense that it avoids tracking a

planned trajectory, our method resembles MPC. However, to

compute the control in real time, MPC approaches typically

use linear dynamics and fix the step timing. We, on the other

hand, avoid any requirement of linearity by performing our

optimization iteratively offline. However, offline computation

forces us to consider all possible states, which subjects

us to the “Curse of Dimensionality” and constrains the

dimensionality of our dynamics. Our coordination scheme

does let us handle higher-dimensional systems by breaking

them into lower-dimensional subsystems, but it requires that



the full system be an ICS. This, in turn, requires that both the

dynamics and cost function be capable of being decoupled

(except at transitions).

One major advantage of this control framework is its

flexibility: Coordination is not dependent on any particular

dynamic model, cost function, or constraints. While we must

take care to maintain low dimensionality and the ability

to decouple our system, we remain free from any further

restrictions - for instance, linearity - on the dynamics or

cost function. In fact, many of the motion’s characteristics

can be controlled by adjusting the cost functions, and the

variables considered can be changed by combining or adding

additional subsystems.

This flexibility opens the door to several possible ex-

tensions. We plan to produce a more human-like walking

motion by discarding the LIPM dynamics and the constant

cz = h constraint in favor of a more natural (and efficient)

height constraint. The inclusion of an additional policy that

controls arm swing and yaw torque may also improve the

gait’s efficiency and aesthetics.

Furthermore, we plan to achieve walking on steps or

otherwise non-flat ground by setting the h̃(xtd ,ytd) term in

the cost function, (18), to a terrain cost and allowing the

touchdown constraint to depend on xtd and ytd . The former

action would invalidate our parabolic approximations of the

value functions, but a more general method of performing

the minimization in (19) - such as gradient descent starting

from multiple locations - can be used, instead. Implementing

walking on the Sarcos humanoid force-controlled robot will

be the focus of future work.

VIII. CONCLUSION

This paper defined an Instantaneously Coupled System

and demonstrated the equivalence of coordinated policies

that are optimal for the subsystems to a single controller

that is optimal for the full ICS. We apply this theory to

walking and present a walking controller for a simulated

biped. Our controller optimizes center of mass motion as well

as footstep timing and location, and it can react in real time

to perturbations and accumulated modeling error. We also

present standing balance experiments on a force-controlled

humanoid robot.
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