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Abstract. We discuss why evaluating melodic segmentation is difficult
when solutions are ambiguous and explore the nature of this ambigu-
ity using a corpus of melodies hand-segmented by musicians. For each
melody, the musicians identified different, musically coherent solutions,
suggesting that ambiguity should be modeled when assessing how “well”
an algorithm segments the same melody. We propose a probabilistic
framework for modeling ambiguity that integrates both the segment
boundaries and the lengths that the musicians preferred. The frame-
work gives rise to several potential extensions of existing segmentation
algorithms.

1 Introduction

Segmenting or parsing a melody amounts to imposing a temporal structure on a
sequence of discrete pitch symbols. This structure is defined by pairs of bound-
aries that break the sequence up into various subsequences. It may involve dif-
ferent levels of hierarchy (Lerdahl and Jackendoff 1983), overlapping boundaries
(Crawford et al. 1998), and unclassified areas that do not belong to any seg-
ment. From a computational point of view it makes sense to simplify the task,
to focus on breaking a melody into a segment stream that contains a series
of non-overlapping, contiguous fragments. An algorithm that automatically pro-
duces a “musically reasonable” segment stream would provide an invaluable tool
for melodic modeling. For example, it could perform an important preprocess-
ing step, dividing up a melody into “locally salient chunks” before considering
higher-level melodic features.

Although we are unaware of any past research that directly supports this
claim, melodic segmentation is most certainly an ambiguous affair. Ambiguity
arises because it is typically not possible to determine one “correct” segmentation
for a melody. Rather, the process is influenced by a rich and varied set of contexts,
where local structure (gestalt principles), higher-level structure (e.g. recurring
motives, harmony, melodic parallelism), style-dependent norms and the breaking
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of these norms all have an impact on what is perceived as “salient.” A two-
fold goal drives this research. First, we want to explore qualitatively how this
ambiguity manifests itself in different musical situations. Second, we strive to
provide a framework for quantifying ambiguity.

We began our research by conducting a study in order to observe the so-
lutions we would get when different musicians were asked to segment a fixed
melodic corpus. This data collection and its qualitative evaluation are described
in Sects. 2 and 4, respectively. In Sect. 3, we present three existing segmentation
algorithms, which set the stage for considering the systematic evaluation of an
algorithm’s performance. In Sect. 5, we introduce three increasingly complex ap-
proaches for quantitatively assessing a solution in the context of an ambiguous
set of reference segmentations. These approaches address the problem of identi-
fying how “appropriate” a segmentation is rather than just identifying whether
a segmentation is “correct.” Since musically plausible segmentations tend to ex-
hibit higher-level structure, such as a certain range of lengths, we incorporate it
explicitly, obtaining more complex, yet more plausible, evaluation measures.

2 Manual Segmentation

We began exploring the task of melodic segmentation by collecting data from
a number of musicians. We compiled a small corpus of ten melodic excerpts in
different musical styles. Some excerpts were selected because of their ambiguous
musical structure (e.g. excerpts from a Bach fugue and a Haydn string quartet),
others were selected because of their noticeable lack of structure (an excerpt from
Wagner’s Parsival). Four folk songs from the Essen collection (Schaffrath 1995)
were included in order to explore how ambiguous a “simple” folk tune might
be. Finally, the corpus included an improvisation over a Bluegrass standard, a
Pop song, and a Bebop jazz solo. For each excerpt, we provided a minimal score
representing the monophonic melody (including meter) and a “dead-pan” MIDI
file. Additional information, such as accompaniment, harmony, lyrics, and origin,
was withheld as segmentation algorithms typically do not use such information.

Twenty-two musicians with various levels of expertise – including profession-
als, musicologists, music teachers, and amateurs – were asked to identify “salient
melodic chunks” for each excerpt. Subjects were instructed to identify bound-
aries at two different levels of granularity, which we called the phrase level and
the sub-phrase level. Sub-phrases were only required to be more fine-grained
than phrases, providing additional structure at “the next level down.” Instruc-
tions were kept deliberately vague. For instance, the term “motive” was not used
because we wanted the musicians to draw upon their musical intuition rather
than perform explicit melodic analyses. Subjects were instructed to identify each
segment by placing a mark above its first note. In this way, each previous seg-
ment was defined as ending just before the next mark, which ensured that a
musician’s solution was always a segment stream.



3 Algorithmic Segmentation

We now present three existing segmentation algorithms and consider how they
have been evaluated. A key aspect of each algorithm is its output representation,
for it has an impact on how ambiguity might be considered when evaluating an al-
gorithm’s performance. A segmentation algorithm’s most basic input is a melodic
line, encoded by a note list comprised of note elements. Variable n refers to the
number of notes contained within the list. Note elements are temporally ordered,
each defined by a discrete pitch, an onset, and an offset time. Individual notes
are referred to by index i, which identifies the location a note occupies in the se-
quence. Different segmentation algorithms might extract different features from
this list. For instance, a list of inter-onset intervals (IOIs) measures the duration
between successive pitches, a list of offset-to-onset intervals (OOIs) indicates the
rests between successive note pairs, and a list of absolute pitch intervals (APIs)
contains the absolute difference in semitones between adjacent pitches (each
interval’s sign is ignored). A segmentation algorithm’s most basic output is seg-
mentation vector s, where s = (s1, ..., si, ..., sn) ∈ {0, 1}

n. Only when a segment
starts at position i does si equal 1; otherwise it is 0. An algorithm might also
output a boundary strength vector w, where w = (w1, ..., wi, ..., wn) ∈ [0, 1]n.
wi quantifies how “strong” an algorithm perceives the boundary at position i

to be, and the vector is normalized over its entire length. Finally, one could
imagine that an algorithm might output a fitness value that rates its solution’s
plausibility.

3.1 Algorithms

Grouper. This algorithm is part of the Melisma Music Analyzer developed by
Temperley (2001) and Sleator.1 Grouper was designed to extract melodic phrase
structure from a monophonic piece of music. Its input is both a note list and a
beat list, which specifies the metrical structure of the melody. Internally, only du-
ration (IOIs and OOIs) and metric information (beat list) are considered; pitch
is ignored. For a given input, output s is deterministic. Dynamic programming
(Bellman 1957) is used to carry out an efficient search for an “optimal” segmen-
tation over the set of 2n possible solutions. Optimality is defined in terms of
preference rules adapted from Lerdahl and Jackendoff (1983). Roughly speak-
ing, these rules prefer a solution whose boundaries are both coincident with the
underlying metrical structure and with events whose IOIs and OOIs are larger.
Preference is also given to solutions whose individual segment lengths approx-
imate a prespecified number of notes. These rules are controlled by high-level
parameters that specify the penalty to be assigned to each segment within s.
The optimal solution is the one whose cumulative penalty is smallest.

Local Boundary Detection Model (LBDM). This model, developed by
Cambouropoulos (2001), is motivated by the gestalt principles of similarity and

1 Ready-to-use software is available at www.links.cs.cmu.edu/music-analysis.



proximity. As such, it quantifies the degree of discontinuity locally along each
adjacent pair of notes. While LBDM is not a complete model of grouping in it-
self,2 it is still compelling to consider this algorithm in isolation, especially since
it might be used to segment raw MIDI data in real time. Another advantage is
the model’s parsimony, which contributes to making it straightforward to imple-
ment.3 LBDM deterministically transforms a note list into a segmentation vector
s and boundary strength vector w. Internally, discontinuity is quantified using
IOI, OOI, and API lists. At each potential boundary location, a strength is cal-
culated that is proportional to the rate at which the neighboring intervals change
and the magnitude of the current interval. For each list, a separate strength vec-
tor is calculated. w is the weighted sum of the three individual strength profiles,
where high-level parameters control the contribution of each profile. Segmenta-
tion vector s is obtained by analyzing the shape of w and inserting a boundary
at every “significant” local maximum. To prevent the algorithm from subdivid-
ing a melody too much, maxima are only considered at those locations where w

exceeds a high-level threshold parameter (cf. Fig. 1).

Data-Oriented Parsing (DOP) Bod (2001) argued for a memory-based ap-
proach to segmentation and implemented such a system using a probabilistic
grammar technique. His most sophisticated and successful grammar performs
data oriented parsing (DOP), which learns probabilistic trees from a large corpus
of presegmented musical data. Musically, DOP is interesting because it imposes
a higher-level structural definition upon the model that is to be learned, biasing
it to prefer solutions that contain an “ideal” number of segments. Internally,
parsing only considers pitch (in relation to the tonic) and note length. After
training, the trees can parse an input note list, producing an output s. To im-
plement DOP would involve significantly more work than LBDM, and since we
did not have access to a completely ready-to-use version of this software, we do
not present examples of DOP’s output. We introduce this model, rather, because
of its probabilistic nature, a property that provides an attractive mechanism for
handling ambiguity.

3.2 Algorithm Parameter Estimation

In the examples described in Sect. 4, we present segmentations by LBDM and
Grouper along with the musicians’ data. Each segmentation was constructed
using a high-level set of parameters that performed well on a large subset of the
Essen collection. For details, see Höthker et al. (2002).

3.3 Evaluation

Computational melodic segmentation is still a relatively new field of research and
many unexplored issues remain. This is especially true concerning an algorithm’s

2 For example, musical parallelism (Cambouropoulos 1998) is not considered.
3 Our software is available at i11www.ira.uka.de/˜musik/segmentation.



evaluation. Cambouropoulos (2001) and Temperley (2001) have both validated
their models by demonstrating how well they behave on hand-selected musical
examples.4 To demonstrate an algorithm’s “musical plausibility,” an analysis us-
ing specific melodic examples is crucial. However, a more objective, systematic
measure is also needed because it allows important computational questions to
be investigated. For example, such a measure was used to explore how sensitive
LBDM and Grouper are with respect to high-level parameter settings and differ-
ent musical styles (Höthker et al. 2002). Even more compelling, when machine
learning is used, as with DOP, a systematic measure becomes indispensable.

One difficulty in assessing an algorithm’s performance is that the classifi-
cation task – to segment or not to segment at each note – is highly skewed.
For instance, in the 52-note melody in Fig. 1, between 3 and 12 boundaries seem
plausible. Thus, an algorithm that predicted no boundaries would appear to have
a very low error rate. In the literature, a melodic segmentation algorithm’s per-
formance has been systematically measured using F score (Bod 2001, Höthker
et al. 2002):

F(s, s∗) =
1

1 + FN+FP

2TP

∈ [0, 1], (1)

where s and s∗ are two segmentations of the same note list. Whereas TP, the
number of true positives, records how many boundaries are identical in both
segmentations, FP and FN, the number of false positives and false negatives,
record how many boundaries are inserted in only one of the two solutions. F score
is an appropriate evaluation measure because it excludes true negatives, and
keeps them from misleadingly dominating the assessment. On the other hand, it
makes the questionable assumption that errors at different boundary locations
are independent.

4 Results

In this section, we present results from the data collection described in Sect. 2
and the segmentation algorithms referred to in Sect. 3.2. When we began analyz-
ing the data, three subjects’ segmentations were eliminated because they were
incomplete. Among the remaining segmentations, a few seemed to be inconsis-
tent or “strange.” However, we decided not to interfere with this remaining data
by eliminating potential outliers. For example, when one experienced musician
obtained a substantially different segmentation for a folk song – either because a
strong upbeat was disregarded or went unnoticed – we did not remove it because
the task is so subjective and ambiguous. Additionally, robust outlier detection
generally requires more than twenty data points, a practical issue, for the data
collection and entry is quite time-consuming.

Despite these problems, the data clearly corroborates the hypothesis that
ambiguity is an inherent property of the segmentation task and should not be
ignored. Even for the “simple” folk song displayed in Fig. 1, nineteen musicians

4 Temperley has also validated his model using songs from the Essen collection.



produced nine different segmentations on the sub-phrase level. In a more com-
plex excerpt (Fig. 3), the number of segmentations rose to eighteen (only two
of the nineteen musicians gave the same answer). In none of the ten melodic
excerpts was unanimous agreement obtained. One cause for this ambiguity con-
cerns granularity – one musician’s notion of a phrase might more closely coincide
with another’s notion of a sub-phrase – yet in terms of identifying “locally salient
chunks,” both are musically reasonable. In other cases, musicians might agree
on a phrase’s length, but disagree on location, and in this situation, ambiguous
boundaries are often adjacent to one another. The examples that follow clarify
these points.

4.1 Example 1: Folk Song

The first example (Fig. 1) is a 19th century folk song taken from the Essen col-
lection (E0356). The phrase structure contained in the Essen notation divides
the song into 4+4+2+2+2+3 bars. The first two Essen phrases comprise a plain
repetition, and are confirmed by practically all of the musicians at the phrase
level. On the sub-phrase level, there is structural ambiguity, and a choice be-
tween “parallel alternatives” presents itself, where one can either emphasize the
downbeat (more common) or the upbeat eighth-note G (less common). A no-
table feature of this ambiguity is its distribution on adjacent locations. There is
also considerable disagreement on the phrase structure of the last five bars. The
spectrum ranges from no phrase boundary, to boundaries at bar 13 or bar 15,
to boundaries at both locations. Different notions of granularity are prevailing,
resulting in a variable number of phrases per song (cf. Fig. 2). Again, either
choice – whether to insert a boundary at bar 13 or at bar 15 – is reasonable,
the former alternative focusing on the implicit harmonic structure and the latter
emphasizing the melodic build-up in bars 9–14.

These findings suggest that the explicit segmentations in the Essen collec-
tion should not be regarded as the only, or even the most musically plausible,
possibilities. It should rather be assumed that, in principle, different solutions
can be equally well-founded. Our assumption is supported by a quotation from
Dahlig (2002) that describes the Essen segmentation process:

When we encode a tune without knowing its text, we do it just intuitively,
using musical experience and sense of the structure. The idea is to make the
phrase not too short (then it is a motive rather than a phrase) and not too long
(then it becomes a musical period with cadence etc.). But, of course, there are
no rules, the division is and will be subjective.

In other words, an algorithm’s segmentations should be assessed in the light
of these remarks. For instance, in the second half of Example 1, Grouper and
Essen agree, yet they differ in the first half. Alternatively, when compared with
the musicians’ solutions, Grouper and LBDM both miss important boundaries
at bars 5 and 9. The segmentation boundaries suggested by LBDM are located
at large IOIs and pitch intervals, which do not provide reliable cues for musi-
cally plausible segmentations in this example. The musicians’ segmentations are
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Fig. 1. Example 1: Folk song E0356, annotated with segmentation results from the
musicians (upper histogram) and the algorithms (lower table). Each histogram count
number identifies a particular musician. Grey squares identify the first note of both
a phrase and sub-phrase; white squares correspond to sub-phrases only. The black
squares refer to segmentations generated by the Position Length Model (Sect. 5.5). The
last three rows show the boundary strength calculated by LBDM, the segmentation
provided in the Essen collection, and Grouper’s solution. The dashed line demonstrates
how LBDM uses its threshold to derive s from w.
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Fig. 2. Example 1: Distributions of the number of notes per segment (HL) and the
number of segments per song (HN ). For definitions, see Table 2.

clearly influenced by motivic parallelism, something neither algorithm considers.
Metrical parallelism is also an influence, which only Grouper has access to.

4.2 Example 2: Fugue

The second example (Fig. 3), an excerpt from the beginning of Fugue XV of
Bach’s Well-Tempered Clavier I, is melodically more complex. In contrast to the
previous example, we have no indication of a theoretically “correct” segmenta-
tion, and Bach did not notate explicit phrase marks.5

A quick glance at the histograms in Fig. 3 conveys an impression of the
disagreement between the subjects, particularly on the sub-phrase (i.e. the mo-
tivic) level, where boundary marks can often be found right next to each other.
A closer look, however, reveals that adjacent phrase marks never stem from the
same musicians, and some segmentations run parallel to one another for several
bars (e.g. along the melodic sequence in bars 6–7). While Grouper explicitly
models such a behavior (preferring boundaries at parallel metric positions), in
this example it nevertheless produces incoherent results in bars 6–7. Because of
the complex interplay between the weighted rules and the dynamic programming
optimization over the entire melody, it is difficult to explain why the algorithm
chose exactly these boundaries. The behavior of LBDM is easier to predict be-
cause it operates on a strictly local context. The huge peak in the boundary
strength in bar 9 shows that a single long note can create an unreasonably large
amplitude that makes threshold selection more difficult.6

5 Temperley (2001) points out: “Even structural information (phrasing slurs, bar lines,
etc.) added by the composer is really only one ‘expert opinion,’ which one assumes
generally corresponds to the way the piece is heard, but may not always do so.”
(p. 365).

6 Cambouropoulos (2001) recommends using another high-level parameter to limit the
boundary strength for large intervals.
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Fig. 3. Example 2: Excerpt from Fugue XV of Bach’s Well-Tempered Clavier I. For
details, see Fig. 1.

5 Modeling Ambiguity

Although the musician data obtained for a note list is clearly valuable, by itself
it provides no mechanism for automatically determining how some new segmen-
tation for the same note list should be evaluated. For a systematic evaluation of
this sort, one would like a fitness evaluator:

fit(s,S)→ [0, 1]

that maps the new s into a larger value when it is “more plausible” given the
musically motivated segmentations in reference set S.

Several questions arise when attempting to evaluate a new and possibly novel
segmentation given an ambiguous reference set. First, when should certain seg-
mentations be perceived as more or less “similar” to one another? Second, when
should an explicit parametric model be used and what parametric form is appro-
priate? Alternatively, should the mapping be constructed in a completely non-



parametric, data-driven way, for instance comparing segment s to each s∗ ∈ S

and then averaging these values? When allowing for ambiguity, a note list can
map into many segmentations, and the musical quality of these solutions might
vary considerably. A probabilistic, parameterized model becomes attractive pro-
vided it assigns larger probabilities to those segmentations that are musically
more plausible.

Data collection and entry are expensive, so this important issue must be
considered. The more complex a model, i.e. the more parameters it contains,
the more likely it is to overfit, which is to say that it predicts the behavior of S
very closely yet fails to generalize well on unseen examples. Overfitting typically
occurs when a model is fit using too little data (Bishop 1995), and often non-
parametric methods are very sensitive to this because their complexity is not
restricted by a parametric form. We are concerned about overfitting because
the data in our reference set seems to be incomplete, meaning that it does not
adequately represent all reasonable segmentations. A strong argument for this
incompleteness comes from the histograms in Figs. 1-3. In each case, if a single
segmentation had been withheld, bins could become empty. Consequently, unless
we are careful when building a probabilistic model from such data, we might
easily derive a model that could map a musically reasonable segmentation onto
a fitness value of zero. We handle this issue by smoothing, adding an additional,
small value ε to every bin and then renormalizing.

5.1 An Evaluation Example

In Table 1, we present a simple, musically motivated example for a 12-note
segmentation task. In the 2nd column of rows (i)-(iii), a reference set of three
segmentations is depicted, two of which are identical. This set would arise when
two of three musicians disagreed about whether or not a repeated melodic line
began on an upbeat or an adjacent downbeat. The top stave in Fig. 1 presents
one example of such positional parallelism for adjacent locations. In rows (a)-(d)
of Table 1, four novel segmentations are given. These were chosen because they
were musically less reasonable given the reference set S. Example (d) provides
a baseline worst case, demonstrating how a model assesses a ridiculous solution.
Musically, the positional parallelism that characterizes the reference solutions
justifies the inferiority of examples (a)-(c). Assuming that segments of length
one are exceptional, examples (b) and (c) are also musically less plausible than
(a). The remaining columns display the values assigned to each example under
a particular fitness evaluation model. These models will now be described and
considered in light of these examples. Since the fitness values for the different
models grow at different rates between zero and one, they will only be directly
compared per-column. Only the differences between these corresponding rank-
ings are relevant across columns.



Table 1. An ambiguous evaluation example

Segmentations fit(s|PM) fit(s|AFM) fit(s|PLM)

(i) 100010001000 0.24 0.77 0.13
S

{

(ii) 100010001000 0.24 0.77 0.13
(iii) 100100010000 0.16 0.55 0.031

(a) 100100001000 0.19 0.66 0.037
(b) 100110000000 0.19 0.66 0.0099
(c) 100110011000 0.17 0.75 0.00071
(d) 111111111111 0.02 0.4 0.000075

5.2 Notation

For convenience, two transformations of segmentation vector s are introduced.
Each element in segmentation index vector s′ = (s′1, . . . , s

′
k) identifies the first

position of a segment, that is s′j = i if and only if si = 1. Variable k refers
to the total number of segments in solution s. The segmentation length vector

l = (l1, . . . , lk) is calculated as the number of notes in each segment. For j ∈
{1, . . . , k − 1}, we set lj = s′j+1 − s′j ; for j = k, we set lk = n + 1 − s′k. Three
histograms, which summarize various average features in the reference set, are
defined in Table 2. The sums range over s ∈ S; k and l depend on the current
segment s being summed; 1l is the indicator function. HS(i) refers to bin i

in histogram HS and indicates how often any musician began a segment at
location i. HS(1) is not included because, according to our task definition, the
first segment always starts at position one, which does not provide any relevant
information. Thus, to construct HS for Example 1, use the counts in bins 2
through 52 in Fig. 1. The notation of HL and HN are similar. HL(i) indicates
how often any musician chose a segment of length i, and HN (i) denotes how
many musicians used i segments in their segmentation.

In our probabilistic models, histograms are always smoothed. For instance,
the position histogram in Table 1 yields

HS = ( 0.318, 0.005, 0.005, 0.109, 0.214, 0.005,
0.005, 0.109, 0.214, 0.005, 0.005, 0.005 ).

when smoothed with ε = 0.05.

Table 2. Histogram definitions

Histogram Definition Range Normalization

HS HS(i) =
1

CS

∑

s
si i ∈ {2, . . . , n} CS =

∑

s
(k − 1)

HL HL(i) =
1

CL

∑

s

∑k

j=1
1l(lj = i) i ∈ {1, . . . , n} CL =

∑

s
k

HN HN (i) = 1

CN

∑

s
1l(k = i) i ∈ {1, . . . , n} CN = |S|



5.3 The Position Model

A very simple but naive approach for combining the reference set into a para-
metric model assumes that histogram HS alone is sufficient in defining how likely
a particular segmentation is. We refer to this approach as the Position Model

(PM) because no higher-level structural information, such as segment length, is
considered. A segment’s probability or likelihood determines its fitness:

fit(s|PM) = Pr(s|HS)
1

k ∝

(

k
∏

i=2

HS(s
′
i)

)

1

k

. (2)

This model assumes that s was generated by a Multinomial distribution that
prefers bin i with probability HS(i). The proportional symbol ∝ arises because
the probability distribution has not been normalized. Provided only solutions
with a fixed number of segments k are being compared, normalization can be
ignored (each scales by the same divisor). When solutions are composed of differ-
ent ks, however, the power of 1

k
, which computes the geometric mean, is needed

to remove the dependence of a solution’s likelihood on k.7

The third column in Table 1 illustrates the behavior of PM and motivates why
considering only the positions of S provides a musically inadequate assessment.
First, note that example (d) would have had a fitness of zero if no smoothing
had been used (ε = 0.05). Also note that the rankings of examples (a)-(c) are
problematic, for they all rank higher than segment (iii). Examples (a) and (b)
are undifferentiated even though the latter contains an implausible segment of
length one. While this behavior sheds light on how PM generalizes – an ability
that is especially important given our belief that S is incomplete – the way it
generalizes is musically inadequate. One problem with Equation 2 is that it only
considers where segments begin (si = 1), which is reminiscent of only consid-
ering the number of true positives. As a consequence, both the length of the
individual segments and the number of segments within a solution are ignored.
Regardless of these deficiencies we introduced this model because it is all-too-
easy to mistakenly assume that HS adequately quantifies a melody’s ambiguity.
For example, at first we assumed that, in terms of LBDM’s performance, am-
biguity could be explicitly modeled by considering HS and w together. The
problems we encountered are similar to those described above.

5.4 Average F Score Model

The Average F score Model (AFM) improves on PM by considering additionally
the false negatives and positives in its calculation:

fit(s|AFM) = AFM(s) =
1

|S|

∑

s∗∈S

F(s, s∗). (3)

7 The geometric mean rescales the probability mass contained in a k-sided volume into
the length of one side of the corresponding k-sided cube, providing a probabilistic
measure that is decoupled from length. Without this term, solutions with larger k

are usually significantly smaller than solutions with smaller k.



Because AFM is obtained directly by averaging over all pairs of F scores between
s and each reference segmentation, it is non-parametric.

At first glance, one might expect this model to grasp positional parallelism
because the locations of each reference solution’s zeros and ones are considered
together. Upon deeper consideration, however, it can be shown that this paral-
lelism is not adequately handled. For example, even though example (iii) results
from (i) by sliding its boundaries one position to the left, one can prove that their
musically unrelated combination, i.e. example (c), has a higher average F score
than reference segmentation (iii) (Höthker et al. 2002). The primary problem
with AFM is that an error occurring on one boundary is treated independently
from all other boundary errors, i.e. a segment’s length is never explicitly consid-
ered. Another disadvantage is that AFM does not model a segment’s likelihood
and thus cannot be used to generate new “typical” solutions stochastically. This
inability is a real handicap because simulation provides valuable insight into a
model’s behavior.

5.5 Position Length Model

In the Position Length Model (PLM), we combine the musicians’ preferences
for certain local position boundaries, a solution’s segment lengths, and the to-
tal number of segments. The benefit of this approach is that it incorporates
higher-order information, which allows us to model ambiguity simultaneously at
different levels of abstraction. Likelihood is estimated as:

fit(s|PLM) = Pr(s, l)
1

k (4)

≈ Pr(s, l|HS , HL, HN )
1

k (5)

∝ HN (k)



HL(lk)

k
∏

j=2

HS(s
′
j)HL(lj−1)





1

k

(6)

The first equality indicates that the model is based on the joint distribution
of both a solution’s position and its length. Again, the geometric mean decou-
ples the dependence between fitness and the number of segments in s. The first
approximation assumes that this joint can be described adequately by the em-
pirical distributions estimated for the reference set. The second approximation
makes two important assumptions: that the likelihood of each pair (sj , lj−1) is
independent of all others (hence the product over j); and that the likelihood of
each pair is independent in length and position (hence each pair of HS(s

′
j) and

HL(lj−1) terms).
The behavior of PLM (ε = 0.05) is shown in the fifth column of Table 1. As

in the previous models, the musically most plausible segmentation (a) has the
highest likelihood among those not contained in the reference set. This segmen-
tation’s fitness is also higher than the likelihood of reference segmentation (iii),
which demonstrates that positional parallelism is not fully captured by PLM. In
contrast to the previous models, however, segmentations with unlikely lengths



(i.e. (b) and (c)) have significantly smaller fitness values than the segmentations
with more plausible lengths.

In Fig. 1, PLM solutions with different numbers of segments (k = 7 through
12) are shown. These examples demonstrate how PLM can accommodate inter-
pretations of different granularities. These solutions were calculated by deter-
mining which segmentation was most likely for a given k. Their boundaries line
up with those chosen by the musicians. Interestingly, as k ranges from 7 to 12,
the segments are arranged hierarchically, i.e. the solution for a larger k contains
the solution for a smaller k within it. This behavior is fairly typical. Due to lack
of space, another important aspect of this model is not displayed in Fig. 1. For
a fixed k, PLM can also be sampled (rather than just reporting the most likely
solution). When this is done, multiple solutions are obtained and therein the
model’s preference for position-parallel solutions is further evidenced.

6 Conclusions and Future Directions

The data we collected from the musicians suggests that ambiguity is an inherent
part of the segmentation task and should not be ignored when evaluating an algo-
rithm’s performance. We argue that the Position Length Model provides a more
compelling fitness evaluation for handling musical ambiguity than some simpler
models that do not consider the positions, lengths, and number of segments to-
gether. PLM maps an algorithm’s solution into a fitness value that defines how
probabilistically similar it is to the musicians’ solutions. Such insight can provide
guidance about what aspects of a segmentation algorithm’s behavior are most
problematic.

Ambiguity also motivates a natural extension to the LBDM and Grouper
algorithms: these algorithms should report fitness values for their segmentations
so that these could be compared to those reported by the musician model. Al-
though LBDM does output boundary strength vector w, the issues that arose
in the Position Model demonstrate why this information alone is insufficient for
constructing an ideal fitness value. Grouper should also report how fit its so-
lutions are, and since, during optimization, this algorithm explicitly considers
segment length and position, perhaps the penalties it assigns to individual seg-
ments could be used to construct a fitness. In addition, these values might be
used to construct a w-like vector, which would provide insight into Grouper’s
behavior in complex situations (cf. the Bach fugue). More generally, it is worth
recasting these algorithms within a probabilistic framework because then one
can generate “typical” solutions stochastically, providing a valuable tool for ex-
ploring the model’s underlying behavior systematically.

This realization brings us back to DOP, whose inherent probabilistic basis
should result in a straightforward sampling procedure and likelihood calcula-
tion. Currently, however, DOP has only been trained on segmentations from the
Essen collection, which presents a single (as opposed to multiple, ambiguous) so-
lution for each folk song. Thus, DOP’s performance should be explored in more
explicitly ambiguous settings. DOP also suffers from a major practical problem:



it has great need for hand-segmented data. Perhaps the most promising future
direction for algorithmic segmentation is to combine Grouper’s and LBDM’s
musically relevant features into a probabilistic, machine learning based method
in order to reduce the amount of data needed to configure the model.
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