
Binary Decision Diagrams: An Algorithmic
Basis for Symbolic Model Checking

Randal E. Bryant1

Abstract Binary decision diagrams provide a data structure for representing and
manipulating Boolean functions in symbolic form. They have been especially ef-
fective as the algorithmic basis for symbolic model checkers. A binary decision
diagram represents a Boolean function as a directed acyclic graph, corresponding
to a compressed form of decision tree. Most commonly, an ordering constraint is
imposed among the occurrences of decision variables in the graph, yielding ordered
binary decision diagrams (OBDD). Representing all functions as OBDDs with a
common variable ordering has the advantages that (1) there is a unique, reduced
representation of any function, (2) there is a simple algorithm to reduce any OBDD
to the unique form for that function, and (3) there is an associated set of algorithms
to implement a wide variety of operations on Boolean functions represented as OB-
DDs. Recent work in this area has focused on generalizations to represent larger
classes of functions, as well on scaling implementations to handle larger and more
complex problems.

1 Introduction

Ordered Binary Decision Diagrams (OBDDs) provide a symbolic representation of
Boolean functions. They can serve as the underlying data structure to implement
an abstract data type for creating, manipulating, and analyzing Boolean functions.
OBDDs provide a uniform representation for operations to define simple functions
and then construct representations of more complex functions via the operations of
Boolean algebra, as well as function projection and composition. In the worst case,
the OBDD representation of a function can be of size exponential in the number of

School of Computer Science, Carnegie Mellon University, Pittsburgh, PA
e-mail: Randy.Bryant@cs.cmu.edu

1

2 Randal E. Bryant

function variables, but, in practice, they remain of tractable size for many applica-
tions.

OBDDs have been especially effective as a data structure for supporting symbolic
model checking, starting with the very first implementations of tools for symboli-
cally checking the properties of finite-state systems [9, 19, 22, 45]. By encoding
sets and relations as Boolean functions, the operations of model checking can be
expressed as symbolic operations on Boolean functions, avoiding the need to ex-
plicitly enumerate any states or transitions.

In the spirit of viewing OBDDs as the basis for an abstract data type, we first
define an Application Program Interface (API) for Boolean function manipulation,
then the OBDD representation, and then how the API can be implemented with OB-
DDs. We describe some of the refinements commonly seen in OBDD implementa-
tions. We present some variants of OBDDs that have been devised to improve effi-
ciency for some applications, as well as to extend the expressive power of OBDDs
beyond Boolean functions. The many variants of OBDDs are sometimes referred
to by the more general term decision diagrams (DDs). Many surveys of OBDDs
and their generalizations have been published over the years [15, 16, 28]. Rather
than providing a comprehensive survey, this chapter focuses on those aspects that
are most relevant to model checking. We describe some efforts to increase the per-
formance of OBDD programs, both to make them run faster and to enable them to
handle larger and more complex applications. We conclude with a brief discussion
on some relationships between OBDDs and Boolean satisfiability (SAT) solvers.

2 Terminology

Let x denote a vector of Boolean variables x1,x2, . . . ,xn. We consider Boolean func-
tions over these variables, which we write as f (x) or simply f when the arguments
are clear. Let a denote a vector of values a1,a2, . . . ,an, where each ai ∈ {0,1}. Then
we write the valuation of function f applied to a as f (a). Note the distinction be-
tween a function and its valuation: f (x) is a function, while f (a) is either 0 or 1.

Let 1 denote the function that always yields 1, and 0 the function that always
yields 0.

We can define Boolean operations ∧, ∨, ⊕, and ¬ over functions as yielding
functions according to the Boolean operations on the underlying elements. So, for
example, f ∧g is a function h such that h(a) = f (a)∧g(a) for all a.

For function f , variable xi and binary value b ∈ {0,1}, define a restriction of f
as the function resulting when xi is set to value b:

f |xi←b (a) = f (a1, . . . ,ai−1,b,ai+1, . . . ,an) .

The two restrictions of a function f with respect to a variable xi are referred to as
the cofactors of f with respect to xi [11].

Binary Decision Diagrams 3

Given the two cofactors of f with respect to variable xi, the function can be
reconstructed as

f =
(

xi∧ f |xi←1
)
∨
(
¬xi∧ f |xi←0

)
. (1)

This identity is commonly referred to as the Shannon expansion of f with respect to
xi, although it was originally recognized by Boole [12].

Other useful operations on functions can be defined in terms of the restriction
operation and the algebraic operations ∧, ∨, ⊕, and ¬. Let f and g be functions
over variables x. The composition of f and g with respect to variable xi, denoted
f |xi←g, is defined as the result of evaluating f with variable xi replaced by the

evaluation of g:

f |xi←g (a) = f (a1, . . . ,ai−1,g(a1, . . . ,an),ai+1, . . . ,an) .

Composition can be expressed based on a variant of the Shannon expansion:

f |xi←g =
(

g∧ f |xi←1
)
∨
(
¬g∧ f |xi←0

)
. (2)

Another class of operations involves eliminating one or more variables from a
function via quantification. That is, we can define the operations ∀xi. f and ∃xi. f as:

∀xi. f = f |xi←1∧ f |xi←0 (3)

∃xi. f = f |xi←1∨ f |xi←0 . (4)

By way of reference, the resolution step of the original Davis–Putnam (DP) Boolean
satisfiability algorithm [25] can be seen to implement existential quantification for
a function represented in clausal form. Their method is based on the principle that
function f is satisfiable (i.e., f (a) = 1 for some a) if and only if ∃xi. f is satisfiable,
for any variable xi.

Quantification can be generalized to quantify over a set of variables X ⊆{x1, . . . ,xn}.
Existential quantification over a set of variables can defined recursively as

∃ /0. f = f

∃(xi∪X). f = ∃xi.(∃X . f) ,

and the extension for universal quantification is defined similarly.
The ability of OBDDs to support variable quantification operations with reason-

able efficiency is especially important for model checking, giving them an important
advantage over Boolean satisfiability solvers. While deciding whether or not an or-
dinary Boolean formula is satisfiable is NP-hard, doing so for a quantified Boolean
formula is PSPACE-complete [32].

Finally, we define the relational product operation, defined for functions f (x),
g(x), and variables X ⊆{x1, . . . ,xn} as ∃X .(f ∧g). As is discussed in Chapter 9, this

4 Randal E. Bryant

operation is of core importance in symbolic model checking as the method to project
a set of possible system states either forward (image) or backward (preimage) in
time. Hence, it merits a specialized algorithm, as will be described in Section 5.

3 A Boolean Function API

Operation Result
Base functions

CONST(b) 1 (b = 1) or 0 (b = 0)
VAR(i) xi

Algebraic operations
NOT(f) ¬ f

AND(f ,g) f ∧g
OR(f ,g) f ∨g

XOR(f ,g) f ⊕g
Nonalgebraic operations

RESTRICT(f , i,b) f |xi←b
COMPOSE(f , i,g) f |xi←g

EXISTS(f , I) ∃XI . f
FORALL(f , I) ∀XI . f

RELPROD(f ,g, I) ∃XI .(f ∧g)
Examining functions

EQUAL(f ,g) f = g
EVAL(f ,a) f (a)
SATISFY(f) some a such that f (a) = 1

SATISFY-ALL(f) {a | f (a) = 1}

Fig. 1 Basic operations for a Boolean function abstract data type

As a way of defining an abstract interface for an OBDD-based Boolean function
manipulation package, Figure 1 lists a set of operations for creating and manipu-
lating Boolean functions and for examining their properties. In this figure f and g
represent Boolean functions (represented by OBDDs), i is a variable index between
1 and n, b is either 0 or 1, and a is a vector of n 0s and 1s. For a set of indices
I ⊆ {1, . . . ,n}, XI denotes the corresponding set of variables {xi | i ∈ I}. This figure
is divided into several sections according to the different classes of operations.

The base operations generate the constant functions and functions corresponding
to the individual variables. The algebraic operations have functions as arguments
and generate new functions as results according to the operations ∧, ∨, ⊕, and ¬.
The nonalgebraic operations also have functions as arguments and as results, but

Binary Decision Diagrams 5

they extend the functionality beyond those of Boolean algebra, implementing the
operations of restriction, composition, quantification, and relational product.

Operations in the final set provide mechanisms to examine and test the properties
of the generated Boolean functions. The EQUAL operation tests whether two func-
tions are equivalent, yielding either true or false. As special cases, this operation
can be used to test for tautology (compare to 1) and (un)satisfiability (compare to
0). The EVAL operation computes the value of a function for a specific set of argu-
ment values. For a satisfiable function, we can ask the program to generate some
arbitrary satisfying solution (SATISFY) or have it enumerate all satisfying solutions
(SATISFY-ALL.) The latter operation must be done with care, of course, since there
can be as many as 2n solutions.

The set of operations listed in Fig. 1 makes it possible to implement a wide vari-
ety of tasks involving the creation and manipulation of Boolean functions, including
symbolic model checking. The overall strategy when working with OBDDs is to
break a task down into a number of steps, where each step involves creating a new
OBDD from previously computed ones. For example, a program can construct the
OBDD representation of the function denoted by a Boolean expression by starting
with functions representing the expression variables. It then evaluates each opera-
tion in the expression using the corresponding algebraic operation on OBDDs until
obtaining the representation of the overall expression.

As an illustration, suppose we are given the Boolean expression

(x1∧ x2∧¬x3)∨ (¬x1∧ x3) . (5)

We can create an OBDD for the function f denoted by this expression using a se-
quence of API operations:

f1 = VAR(1)
f2 = VAR(2)
f3 = VAR(3)
f4 = AND(f1, f2)

f5 = NOT(f3)

f6 = AND(f4, f5)

f7 = NOT(f1)

f8 = AND(f7, f3)

f = OR(f6, f8)

Similarly, given a combinational logic circuit, we can generate OBDD represen-
tations of the primary output functions by starting with OBDD representations of
the primary input variables and then stepping through the network in topological
order. Each step involves generating the OBDD for the function at the output of a
gate according to the gate input functions and the gate operation.

6 Randal E. Bryant

4 OBDD Representation

x1

x2

x3

0 1

x3

v1

v2

v3 v4

v5 v6

Fig. 2 OBDD representation of (x1∧ x2∧¬x3)∨ (¬x1∧ x3)

A binary decision diagram (BDD) represents a Boolean function as an acyclic
directed graph, with the nonterminal vertices labeled by Boolean variables and the
leaf vertices labeled with the values 1 and 0 [1]. For nonterminal vertex v, its associ-
ated variable is denoted var(v), while for leaf vertex v its associated value is denoted
val(v). Each nonterminal vertex v has two outgoing edges: hi(v), corresponding to
the case where its variable has value 1, and lo(v), corresponding to the case where
its variable has value 0. We refer to hi(v) and lo(v) as the hi and lo children of vertex
v. The two leaves are referred to as the 1-leaf and the 0-leaf.

As an illustration, Fig. 2 shows a BDD representation of the function given by
the expression in Eq. 5. In our figures, we show the arcs to the lo children as dashed
lines and to the hi children as solid lines. To see the correspondence between the
BDD and the Boolean expression, observe that there are only two paths from the
root (vertex v1) to the 1-leaf (vertex v6): one through vertices v2 and v4, such that
variables x1, x2, and x3 have values 1, 1, and 0, and one through vertex v3 such that
variables x1 and x3 have values 0 and 1.

We can define the Boolean function represented by a BDD by associating a func-
tion fv with each vertex v in the graph. For the two leaves, the associated values are
1 (1-leaf) and 0 (0-leaf). For nonterminal vertex v, the associated function is defined
as

fv =
(

var(v)∧ fhi(v)
)
∨
(
¬var(v)∧ flo(v)

)
. (6)

We see here the close relation between the BDD representation of a function and
the Shannon expansion; the two children of a vertex correspond to its two cofactors
with respect to its associated variable. Every vertex in a BDD represents a Boolean

Binary Decision Diagrams 7

function, but we designate one or more of these to be root vertices, representing
Boolean functions that are referenced by the application program.

With ordered binary decision diagrams (OBDDs), we enforce an ordering rule on
the variables associated with the graph vertices. For each vertex v having var(v)= xi,
and for vertex u ∈ {hi(v), lo(v)} having var(u) = x j, we must have i < j. For the
rest of this chapter, we assume that all functions are represented as OBDDs with a
common variable ordering. In the example BDD of Fig. 2, we see that the variable
indices along all paths from the root to the leaves are in increasing order, and thus it
is an OBDD.

We can define a reduced OBDD as one satisfying the rules:

1. There can be at most one leaf having a given value.
2. There can be no vertex v such that hi(v) = lo(v).
3. There cannot be distinct nonterminal vertices u and v such that var(u) = var(v),

hi(u) = hi(v), and lo(u) = lo(v).

Given an arbitrary OBDD, we can convert it to reduced form by repeatedly applying
transformations corresponding to these three rules:

1. If leaves u and v have val(u) = val(v), then eliminate one of them and redirect
all incoming edges to the other.

2. If vertex v has lo(v) = hi(v), then eliminate vertex v and redirect all incoming
edges to its child.

3. If vertices u and v have var(u) = var(v), hi(u) = hi(v), and lo(u) = lo(v), then
eliminate one of the vertices and redirect all incoming edges to the other one.

By working from the leaves upward, and by employing sparse labeling techniques,
this reduction can be performed in time linear in the size of the original graph [58].
The example OBDD of Fig. 2 is, in fact, a reduced OBDD.

Bryant showed that reduced OBDDs serve as a canonical form for Boolean func-
tions [13]. That is, for a given variable ordering, every Boolean function over these
variables has a unique (up to isomorphism) representation as a reduced OBDD.

There are two different conventions for representing multiple functions as OB-
DDs. In a split representation, each function has a separate OBDD, and each graph
has a single root. In a shared representation [48], the reduction rules are applied
across the entire set of functions, and so the entire collection of functions is repre-
sented as a single OBDD having multiple roots. The shared representation not only
reduces the space required to represent a set of functions, it has the property that
two represented functions are equal if and only if they are represented by the same
vertex in the OBDD. That is, there cannot be two distinct vertices u and v such that
fu = fv. This is sometimes referred to as a strong canonical form.

5 Implementing OBDD Operations

As Fig. 1 indicates, an OBDD software package must implement a number of op-
erations. For those having a Boolean function as an argument or result, we denote

8 Randal E. Bryant

xi

0 1

Variable xi

0 1

Constant

functions

Fig. 3 OBDD representation for constant functions and variable xi

this function by the root vertex in its OBDD representation. Thus, when describing
OBDD algorithms, we define the operations in terms of vertex names, such as u and
v, rather than abstract function names, such as f and g. As mentioned earlier, we
can implement a set of Boolean functions as either a collection of separate OBDDs,
each having a single root (split form), or as a single OBDD having multiple roots
(shared form). In our presentation, we consider both approaches.

The base functions listed in Fig. 1 have simple representations as OBDDs, as
shown in Fig. 3. Algorithms for the other operations follow a common framework
based on depth-first traversals of the argument graphs. We present the Apply algo-
rithm, a general method for implementing the binary Boolean algebraic operations,
as an illustration.

The Apply algorithm has as arguments an operation op (equal to AND, OR, or
XOR), as well as vertices u and v. The implementation, shown in Figure 4, performs
a depth-first traversal of the two argument graphs and generates a reduced OBDD
from the bottom up as it returns from the recursive calls. The algorithm makes use
of two data structures storing keys and values. The computed cache stores results
from previous invocations of the Apply operation, a process commonly referred to
as memoizing [46]. Each invocation of Apply first checks this cache to determine
whether a vertex corresponding to the given arguments has already been computed.
As the name suggests, this data structure can be a cache where elements are evicted
when space is needed, since the purpose of this data structure is purely to speed up
the execution. The unique table contains an entry for every OBDD vertex, with a key
encoding its variable and children. This table is used to ensure that it does not create
any duplicate vertices. When using a split representation, this cache and table must
be reinitialized for every invocation of Apply, while for a shared representation, the
two data structures are maintained continuously.

Figure 5 shows cases where the recursive function implementing the Apply al-
gorithm can terminate. As can be seen, the use of a shared representation enables
additional terminal cases. In Section 6, we will discuss the use of complement edges
to indicate the negation of a function. Their use enables even more terminal cases.

As the Apply algorithm illustrates, standard implementations of OBDD opera-
tions perform depth-first traversals of one or more argument graphs and generate
reduced graphs as the recursions complete. The unique table is used to enforce re-
duction rules 1 and 3. The computed cache is used to stop the recursion when pre-
viously computed results are encountered. This cache can guarantee that the time

Binary Decision Diagrams 9

1. If the computed cache contains an entry with key 〈op,u,v〉, then return the associ-
ated value.

2. If one of the special cases shown in Fig. 5 applies, then return the specified value.
3. Recursively compute the two cofactors of the result as follows:

a. Let xi = var(u), x j = var(v), and k = min(i, j).
b. Compute u1 and u0 as u1 = hi(u) and u0 = lo(u) when i = k,

and as u1 = u0 = u when i 6= k.
c. Compute v1 and v0 as v1 = hi(v) and v0 = lo(v) when j = k,

and as v1 = v0 = v when j 6= k.
d. Compute w1 = APPLY(op,u1,v1) and w0 = APPLY(op,u0,v0).

4. Compute result vertex w:

a. If w1 = w0, then w = w1;
b. else if the unique table contains an entry for key 〈xk,w1,w0〉, then let w be the

associated value;
c. else create a new vertex w with var(w) = xk, hi(w) = w1, and lo(w) = w0. Add

an entry to the unique table with key 〈xk,w1,w0〉 and value w.

5. Add an entry with key 〈op,u,v〉 and value w to the computed cache and return w.

Fig. 4 Recursive algorithm to compute APPLY(op,u,v).

required by the algorithm is bounded by the number of unique argument combina-
tions. If the top-level arguments to APPLY have Nu and Nv vertices, respectively,
then the total number of calls to APPLY is at most Nu×Nv. Typical implementa-
tions of the computed cache and the unique table use hashing techniques, which can
yield constant average time for each access, and thus the overall time complexity of
APPLY is O(Nu×Nv).

The other operations listed in Fig. 1 are implemented in a similar fashion. We give
only brief descriptions here; more details can be found in [13]. The NOT operation
proceeds by generating a copy of the argument OBDD, with the values of the leaf
vertices inverted. To compute RESTRICT(f , i,b), we want to eliminate every vertex
v in the graph for f having var(v) = xi and redirect each incoming arc to either hi(v)
(when b = 1) or lo(v) (when b = 0). Rather than modifying existing vertices, we
create new ones as needed, applying the reduction rules in the process.

We have already seen that the composition, quantification, and relational product
operations can be computed using combinations of restriction and Boolean algebraic
operations (Eqs. 2–4.) However, these operations are of such critical importance in
symbolic model checking and other applications that they are often implemented
with more specialized routines. As with Apply, these algorithms use a combination
of depth-first traversal, memoizing, and the unique table to generate a reduced graph
as their result.

As an example, the algorithm to perform existential quantification can be ex-
pressed as a recursive function EXISTS(u, I), where u is a BDD vertex and I is a
set of variable indices. It maintains a quantifier cache using keys of the form 〈u, I〉.
On a given invocation, if neither a previously computed result is found nor a ter-
minal case applies, it retrieves u1 and u0, the two children of u, and recursively

10 Randal E. Bryant

Operation op Condition Restrictions Result
AND u, v are leaves CONST(val(u)∧ val(v))
AND u = 0 CONST(0)
AND v = 0 CONST(0)
AND u = 1 S v
AND v = 1 S u
AND u = v S u
AND u = NOT(v) S, C CONST(0)
OR u, v are leaves CONST(val(u)∨ val(v))
OR u = 1 CONST(1)
OR v = 1 CONST(1)
OR u = 0 S v
OR v = 0 S u
OR u = v S u
OR u = NOT(v) S, C CONST(1)

XOR u, v are leaves CONST(val(u)⊕ val(v))
XOR u = 1 NOT(v)
XOR v = 1 NOT(u)
XOR u = 0 S v
XOR v = 0 S u
XOR u = v S CONST(0)
XOR u = NOT(v) S, C CONST(1)

S: Only with a shared representation
C: Only when complement edges are used

Fig. 5 Special cases for the Apply operation, with arguments op, u, and v.

computes w1 = EXISTS(u1, I−{i}) and w0 = EXISTS(u0, I−{i}). For xi = var(u),
when i ∈ I, it computes the result as w = APPLY(OR,u1,u0). Otherwise, it either re-
trieves or creates a vertex w with var(w) = xi, hi(w) = w1, and lo(w) = w0. Vertex w
is then added to the quantifier cache with key 〈u, I〉. Universal quantification can be
implemented similarly, or we can simply make use of DeMorgan’s Laws to express
universal quantification in terms of existential: ∀X . f = ¬∃X .(¬ f).

As mentioned earlier, the relational product operation implements ∃X .(f ∧g) for
variables X , and functions f and g. In principle, this operation could proceed by first
computing f ∧ g and then existentially quantifying the variables in X . Experience
has shown, however, that the graph representing f ∧ g will often be of unmanage-
able size, even though the final result of the relational product is more tractable. By
combining conjunction and quantification during a single traversal of the graphs for
f and g, this problem of “intermediate explosion” can often be avoided. This algo-
rithm is expressed by a recursive function RELPROD(f ,g, I) that uses a combination
of the rules we have seen in the implementations of APPLY and EXISTS [18, 63].

We are left with the operations that test or examine one or more functions. As
already mentioned, when using a shared representation, testing for equality can be
done by simply checking whether the argument vertices are the same. With a split
representation, we can implement a simple traversal of the two graphs to test for iso-
morphism. To evaluate a function for a specified set of argument values, we follow a

Binary Decision Diagrams 11

path from the root to a leaf, at each step branching according to the value associated
with the variable, with the leaf value serving as the result of the evaluation.

To find a single satisfying assignment for a function, we can search for a path
from the root to the 1-leaf. This search does not require any backtracking, since,
with the exception of arcs leading directly to the 0-leaf, each arc is part of a path
leading to the 1-leaf. To find all satisfying solutions, we can perform a depth-first
traversal of the graph to enumerate every path leading to the 1-leaf.

6 Implementation Techniques

Dozens of OBDD software packages have been created, displaying a variety of im-
plementation strategies and features. Most implementations follow a set of prin-
ciples described in a 1990 paper by Brace, Rudell, and Bryant (BRB) [10]. In an
evaluation of many different packages for benchmarks arising from symbolic model
checking problems [63], the best performance consistently came from packages
very similar to the BRB package. Here we highlight some of its key features. In
Sect. 10, we describe efforts to scale OBDD implementations to handle large graphs
and to support parallel execution. An excellent discussion of implementation issues
can be found in [59].

Most OBDD packages, including BRB, use a shared representation, with all
functions represented by a single, multi-rooted graph [48]. Formally, we can de-
fine a shared OBDD as representing a set of functions F , where each f ∈ F is
designated by a root vertex in the graph. As we have seen, this approach has several
advantages over a separate representation:

• it reduces the total number of vertices required to represent a set of functions,
• it simplifies the task of checking for equality, and
• it provides additional cases where the recursions for operations such as Apply

and restriction can be terminated (see Fig. 5.)

On the other hand, using a shared representation introduces the need for some form
of garbage collection to avoid having the available space exhausted by vertices that
are no longer reachable from any of the active root vertices. Most shared OBDD
implementations maintain a count of the total number of references to each vertex,
including arcs from other vertices as well as external references to the root vertices.
A vertex is a candidate for reclamation when its reference count drops to zero. Re-
claiming a vertex also involves removing the corresponding entry from the unique
table as well as every entry in the computed cache that references that vertex as part
of its key or value.

The BRB package makes use of complement edges, where each edge has an ad-
ditional attribute indicating whether or not the designated function is represented in
true or complemented form. By adopting a set of conventions on the use of these at-
tributes, it is possible to define a canonical form such that the NOT operation can be
computed in constant time by simply inverting the attribute at the root [10, 42, 48].

12 Randal E. Bryant

By sharing the subgraphs for functions and their complements, such a representation
can reduce the total number of vertices by as much as a factor of two. Perhaps more
importantly, it makes it possible to perform the NOT operation in unit time. We can
also see from Figure 5, that the combination of a shared representation and comple-
ment edges provides additional terminal cases for Apply and other operations.

The BRB package generalizes the two-operand Boolean operations to a single
three-argument operation known as ITE (short for “If-Then-Else”), defined as:

ITE(f ,g,h) = (f ∧g) ∨ (¬ f ∧h) . (7)

Using this single operation, we can implement other operations as:

AND(f ,g) = ITE(f ,g,0)
OR(f ,g) = ITE(f ,1,g)

XOR(f ,g) = ITE(f ,NOT(g),g)

COMPOSE(f , i,g) = ITE(g,RESTRICT(f , i,1),RESTRICT(f , i,0)) .

By rearranging and complementing the arguments according to a simple set of
transformations, unifying the algebraic operations in this form can take advantage
of DeMorgan’s Laws to increase the hit rate of the computed cache [10]. This can
dramatically improve overall performance, since each hit in the computed cache can
potentially eliminate many recursive calls.

One feature of BRB and most other packages is that the individual node data
structures are immutable. During program execution, new nodes are created, and
ones that are no longer needed can be recycled via garbage collection, but the nodes
themselves are not altered.1 This functional programming model provides a useful
abstraction for a Boolean function API, but it also implies that the package can
expend much of its effort performing memory management tasks. New nodes must
be created and old ones recycled, rather than simply letting the program modify
existing nodes.

Several OBDD packages have been implemented that instead view the OBDD as
a mutable data structure. For example, the SMART model checker [21] represents
the set of states that have been encountered during a state-space exploration using
a variant of OBDDs, called multiway decision diagrams (MDDs), that we describe
in Sect. 9. As new states are encountered, the MDD is modified directly to include
these states in its encoding. When performing model checking of asynchronous sys-
tems, as is the case with SMART, this approach seems appropriate, since each action
of the system can be captured by a small change to the MDD.

1 There is a nuance to this statement that we will discuss when we consider the implementation of
dynamic variable reordering.

Binary Decision Diagrams 13

7 Variable Ordering and Reordering

The algorithms we have presented require that the variables along all paths for
all represented functions follow a common ordering. Any variable ordering can
be used, and so the question arises: “How should the variable ordering be cho-
sen?” Some functions are very sensitive to variable ordering, ranging from linear
to exponential in the number of variables. These include the functions for bit-level
representations of integer addition and comparison. Others, including all symmet-
ric functions, remain of polynomial size for all variable orderings [13]. Still others
have exponential size for all possible variable orderings, including those for a bit-
level representation of integer multiplication [14].

We can express the choice of variable ordering by considering the effect of per-
muting the variables in the OBDD representation of a function. That is, for Boolean
function f and permutation π over {1, . . . ,n}, define π(f) to be a function such that

π(f)(x1, . . . ,xn) = f (xπ(1), . . . ,xπ(n)) .

Different permutations π yield different OBDDs, but all of these can be viewed as
just different representations of a single underlying function. The task of finding
a good variable ordering for a function f can then be defined as one of finding a
permutation π that minimizes the number of vertices in the OBDD representation of
π(f). For a shared OBDD representation, we wish to find a good variable ordering
for the entire graph. That is, for permutation π and function set F , define π(F) to
be {π(f) | f ∈F}. For a shared OBDD implementation, we seek a permutation π

that minimizes the number of vertices in the OBDD representation of π(F).
In general, the task of finding an optimal ordering π for a function f is NP-hard,

even when f is given as an OBDD [8]. There is not even a polynomial-time algo-
rithm that can guarantee finding a variable ordering within a constant factor of the
optimum, unless P = NP [57]. Similar results hold for a shared OBDD representa-
tion [61]. Published algorithms to find the exact optimal ordering have worst-case
time complexity O(n3n) [29] for a function with n variables. Knuth has devised
clever data structures that make the process practical for up to around n = 25 [38].

Instead of attempting to find the best possible ordering, a number of researchers
have derived heuristic methods that have been found to generate reasonably good
variable orders for specialized applications, such as when the Boolean function is
derived from a combinational circuit [30, 43], a sequential circuit [36], a CNF rep-
resentation [3], or a set of interacting state machines [6].

An alternate approach to finding a good variable ordering at the outset of the
computation is to dynamically reorder the variables as the BDD operations proceed.
This idea was introduced by Rudell [55], based on the observation that exchanging
two adjacent variables in a shared OBDD representation can be implemented with-
out making major changes to the Boolean function library API. Let πi be the permu-
tation that exchanges the values of i and i+1, while keeping all other elements the
same. Exchanging variables i and i+ 1 in a shared OBDD representation involves
converting the OBDD representation of function set F into one for function set

14 Randal E. Bryant

πi(F). This transformation can be implemented by introducing new vertices and
relabeling and eliminating some of the existing vertices, but with the property that
the identities of all root vertices are preserved. This is an important property, since
external references to functions being manipulated by the application program con-
sist of pointers to root vertices in the graph. Thus, the reordering can be performed
without altering any of these external references. Even though the relabeling of ver-
tices mutates the node data structures, these changes still preserve the “functional”
property stated earlier—the underlying functions being represented do not change.

Using pairwise exchanges of adjacent variables as the basic operation, most
OBDD libraries implement dynamic variable ordering by a process known as sifting
[55]. A single variable, or a small set of variables [53], is moved up and down in
the ordering via a sequence of adjacent-variable exchanges, until a location yielding
an acceptable number of total vertices is identified. In the original formulation of
sifting, a variable is moved across the entire range of possible positions and then
back to the position that minimizes the overall OBDD size. More recently, lower
bound techniques have been used to guide the range over which each variable is
moved [27]. Sifting is a very time-consuming process, but it has been shown to
greatly improve memory performance—often the limiting factor for OBDD-based
applications.

8 Variant Representations

Researchers have examined many variants of OBDDs, both for representing Boolean
functions and for extending to functions where the domain, the range, or both are
non-Boolean. Here we survey some of the variants that have either proved effective
for model checking or that seem especially promising. Some of these were also de-
scribed in an earlier survey [16]. Other surveys provide even more comprehensive
coverage of the many innovative variants of OBDDs that have been devised [28].

Zero-suppressed BDDs

Perhaps the most successful variant of OBDDs are zero-suppressed BDDs [47],
sometimes referred to as ZDDs. This representation differs from traditional OBDDs
only in the interpretation applied to the case where an arc skips one or more vari-
ables. That is, it concerns the case where there is an arc emanating from a vertex v
with label var(v) = xi to a vertex u with label var(u) = x j, such that j > i+1. In the
example of Fig. 2 (reproduced on the left-hand side of Fig. 6), such an arc occurs
from the root vertex v1 to vertex v3. With conventional OBDDs, such an arc indicates
a case where the represented function is independent of any of the intervening vari-
ables. In the example, f |x1←0 is independent of x2. With a ZDD, such an arc indi-
cates a case where the represented function is of the form ¬xi+1∧ ·· ·∧¬x j−1∧ fu,

Binary Decision Diagrams 15

A). OBDD

x1

x2

x3

0 1

x3

v1

v2

v3 v4

v5 v6

B). ZDD

x1

x2

0 1

x3

x2

u1

u2

u3

u4

u5 u6

Fig. 6 BDD and ZDD representations of the set of sets {{1,2},{3},{2,3}}.

where fu is the function associated with vertex u. For ZDDs, we replace the second
reduction rule for OBDDs (that a vertex cannot have two identical children) with a
rule that no vertex can have the 0-leaf as its hi child.

More formally, we can define the Boolean function denoted by a ZDD by defin-
ing a set of functions of the form f j

v for each vertex v. For leaf vertex v, we define
this set for all j ≤ n+1 as follows:

f j
v =

1 , j = n+1 and val(v) = 1
0 , j = n+1 and val(v) = 0
¬x j ∧ f j+1

v , j ≤ n .

For nonterminal vertex v having xi = var(v) we define this set for all j ≤ i as:

f j
v =

{
xi∧ f i+1

hi(v) ∨ ¬xi∧ f i+1
lo(v) , j = i

¬x j ∧ f j+1
v , j < i .

The function associated with root vertex v is then f 1
v .

Although ZDDs can be considered an alternate representation for Boolean func-
tions, it is more useful to think of them as representing sets of sets. That is, let
Mn = {1, . . . ,n}, and consider sets of sets of the form S ⊆P(Mn). We can encode
any set A⊆Mn, with a Boolean vector a, where ai equals 1 when i ∈ A, and equals
0 otherwise. The set of sets represented by Boolean function f consists of those sets
A for which the corresponding Boolean vector yields f (a) = 1. As examples, Fig. 6
shows both the OBDD (left) and the ZDD (right) representations of the set of sets
{{1,2},{3},{2,3}}. The OBDD representation is identical to that of Fig. 2, because
these are the only three satisfying assignments to Eq. 5. Comparing the ZDD, we
see that, with two exceptions, each vertex vi in the OBDD has a direct counterpart

16 Randal E. Bryant

ui in the ZDD. The first exception is the introduction of new vertex u4 having two
identical children, since such vertices are no longer eliminated by our revised reduc-
tion rules. The second exception is that there is no counterpart to vertex v4, since
this vertex had the 0-leaf as its hi child.

ZDDs are especially well suited for representing sets of sparse sets, defined as
having two general properties:

• The total number of sets is much smaller than 2n.
• Most of the included sets have far fewer than n elements.

These conditions tend to give OBDD representations where many nonterminal ver-
tices have the 0-leaf as their hi children, and these vertices are eliminated by using
a ZDD representation.

The OBDD and ZDD representations of a function do not differ greatly in size.
It can easily be shown that if these two representations have No and Nz vertices,
respectively, then Nz/n≤ No ≤ n×Nz [56]. Nonetheless, for complex functions and
large values of n, the advantage of one representation over the other can be very
significant.

ZDDs have proved especially effective for encoding combinatorial problems [38,
56]. They have been used in model checking for cases where the set of states have
the sparseness properties we have listed, such as for Petri nets [65].

Partitioned OBDDs

The general principle of partitioned OBDDs is to divide the 2n possible combi-
nations of variable assignments into m different, nonoverlapping subsets, and then
create a separate representation for a function over each subset.

More formally, define a set of partitioning functions as a set of functions P =
〈p1, . . . , pm〉, such that

∨
i pi = 1 and for each i and j such that i 6= j, we have pi ∧

p j = 0.
Each function f is then represented by a set of functions 〈 f1, . . . fm〉, where each

fi equals f ∧ pi. It can readily be seen that the Boolean operations distribute over
any partitioning. For example, for h = f ∨ g, we have hi = fi ∨ gi for each parti-
tion i. On the other hand, other operations, including restriction, quantification, and
composition do not, in general, distribute over a partitioning.

Partitioning has been shown to be effective for applications where conventional,
monolithic OBDDs would be too large to represent and manipulate. One approach
is to allow different variable orderings for each partition [50]. This approach works
well for applications where some small set of “control” variables determine impor-
tant properties of how the remaining variables relate to one another. The different
partitions then consist of all possible enumerations of these control variables.

As will be discussed later (Sect. 10), partitioning can also provide the basis for
mapping an OBDD-based application onto multiple machines in a distributed com-
puting environment.

Binary Decision Diagrams 17

9 Representing Non-Boolean Functions

Many systems for which we might wish to apply model checking involve state vari-
ables or parameters that are not Boolean. A number of schemes have been devised to
represent such functions as decision diagrams, seeking to preserve the key properties
of OBDDs: 1) they achieve compactness, mostly through the sharing of subgraphs,
2) key operations can be implemented via graph algorithms, and 3) properties of the
represented functions can readily be tested. Here we describe some of the decision
diagrams that have been used in model checking and related applications.

Functions over Discrete Domains

Consider the case where function variable x ranges over a finite set D= {d0, . . . ,dK−1}.
There are several possible ways to represent a function over x as a decision diagram:

Binary encoding: Recode x in terms of Boolean variables xk−1,xk−2, . . . ,x0, where
k = dlog2 Ke. Each value di is encoded according to the binary representation of
i. When K is not a power of 2, then we can either 1) add an additional constraint
that any valid assignment to the Boolean variables must correspond to a binary
value less than K, or 2) define multiple assignments to the Boolean variables
to encode a single value from D. A binary encoding minimizes the number of
Boolean variables required.

Unary encoding: Recode x in terms of Boolean variables bK−1,bK−2, . . . ,b0, where
value di is encoded by having xi = 1 and all other values equal to zero. Except
for very small values of K, this encoding would be impractical for OBDDs, but
it works well for ZDDs.

Multiway branching: Generalize the OBDD data structure to multivalued deci-
sion diagrams [21, 37], where a vertex for a K-valued variable has an outgoing
arc for each of its K children.

Indeed, all three of these approaches have been used successfully.
For representing functions over discrete domains having non-Boolean ranges, the

most straightforward approach is to allow the leaves to have arbitrary values, leading
to multi-terminal binary decision diagrams (MTBDDs) [31]. (These have also been
called algebraic decision diagrams (ADDs) [7].) More precisely, for a function f
mapping to some codomain R, define its image Img(f) as those values r ∈ R such
that r = f (a) for some argument value a. Then the MTBDD representation of f has
a leaf vertex for each value in Img(f).

The set of operations on such functions depends on the types of functions being
represented. Typically, they follow the same approach we saw with the algorithm
for the Apply operation (Sect. 5)—they recursively traverse the argument graphs,
stopping when either a terminal case is reached, or the arguments match those stored
in a computed cache. For example, when R is either the set of reals or integers,
such an approach can be used to perform algebraic operations such as addition or

18 Randal E. Bryant

multiplication over functions. It can also be used to generate a predicate, capturing
some property of the function values. For example, for function f mapping to real
values, let Z f be the Boolean function that yields 1 for those arguments a for which
f (a) = 0.0, and 0 otherwise. We can generate an OBDD representation of Z f by
traversing the MTBDD representation of f , returning 1 when we encounter leaf
value 0.0, 0 when we encounter a nonzero leaf value, and either generating a new
vertex or retrieving one from the unique table for the nonterminal cases.

MTBDDs have been used for a variety of applications, encoding such values as
data-dependent delays in transistor circuits [44], as well as transition probabilities
in Markov chains [40]. Their biggest limitation is that the size of a function image
can be quite large, possibly exponential in the number of function variables. Such a
function will have many leaf vertices and therefore little sharing of subgraphs. This
lack of sharing will reduce the advantage of decision diagrams over more direct
encodings of the problem domain, both in the compactness of the representation
and the speed of the operations on them. Successful applications of MTBDDs often
avoid this “value explosion” by exploiting the modularity in the underlying system.
For example, when performing model checking of stochastic systems, the transition
probabilities for the different subsystems can be maintained as separate MTBDDs,
rather than combined via a product construction [2].

Functions Over Unbounded Domains

When a function variable x ranges over an infinite domain D, we cannot simply
encode its possible values with a set of binary values or add multiple branches to
the vertices of a decision diagram. In some applications, however, we need only
capture a bounded set of attributes of the state variables. In this section, we describe
Difference Decision Diagrams (DDDs) [49] as an example of this approach. DDDs
illustrate a general class of decision diagrams, where the decisions are based on
predicates over some domain, rather than simple Boolean variables. We then discuss
several variants and extensions of this representation.

The Difference Decision Diagram data structure was devised specifically for ana-
lyzing timed automata. As discussed in Chap. 27, a timed automaton operates over a
discrete state space but also contains real-valued clocks that all proceed at the same
rate, but they can be at different offsets with respect to one another [4]. Although the
clock values can be unbounded, their behavior can be characterized during model
checking in terms of a finite set of bounds on their differences. DDDs therefore ex-
press the values of the clocks in terms of a set of difference constraints, each of the
form xi−x j ≤ c or xi−x j < c, where xi and x j are clock variables, and c is an integer
or real value. In the spirit of OBDDs, DDDs also impose an ordering requirement
over difference constraints, based on the indices i and j of the two variables, the
comparison operator (≤ vs. <), and the constant c.

Figure 7 show three examples of DDDs and serves to illustrate some subtle issues
that arise when generalizing from a decision diagram where the decisions represent

Binary Decision Diagrams 19

A). With unsaturated paths

x1-x2
≤ 4

x1-x3
≤ 12

0 1

x2-x3
≤ 5

v1

v2

v4

v5 v6

B). With infeasible path
x1-x2
≤ 4

x1-x3
≤ 10

x1-x3
≤ 12

0 1

x2-x3
≤ 5

v1

v3 v2

v4

v5 v6

C). With saturated paths
x1-x2
≤ 4

x1-x3
≤ 9

x1-x3
≤ 12

0 1

x2-x3
≤ 5

v1

v3 v2

v4

v5 v6

Fig. 7 Difference Decision Diagram (DDD) Examples. Vertices are labeled by difference con-
straints.

independent Boolean variables to one in which the decisions represent predicates
over some other domain. The DDD on the left (A) represents a disjunction of two
different constraints C1 and C2, defined as follows:

C1 = (x1− x2 > 4)∧ (x1− x3 ≤ 12)
C2 = (x1− x2 ≤ 4)∧ (x2− x3 ≤ 5)

The DDD in the center (B) also represents a disjunction of two constraints: C1, as in
(A), as well as a constraint C′2:

C′2 = (x1− x2 ≤ 4)∧ (x2− x3 ≤ 5)∧ (x1− x3 > 10).

On closer examination, however, we can see that constraint C′2 must be false for all
values of x1, x2, and x3. That is, if x1− x2 ≤ 4 and x2− x3 ≤ 5, then we must have
x1−x3≤ 9, and this conflicts with the term x1−x3 > 10. The possibility of infeasible
paths implies that there is no simple way to determine whether a set of constraints
represented as a DDD is satisfiable, whereas this is a trivial task with OBDDs. In
particular, it is possible to determine whether any path in a DDD from the root to
the 1-leaf is satisfiable in polynomial time, but there can be an exponential number
of such paths.

The DDD on the right (C) represents a disjunction of constraint C1, as before,
and a constraint C′′2 :

C′′2 = (x1− x2 ≤ 4)∧ (x2− x3 ≤ 5)∧ (x1− x3 ≤ 9).

20 Randal E. Bryant

We can see that constraint C′′2 is mathematically equivalent to C2. As with C′2, the first
and second terms of C′′2 already imply that the third term, x1− x3 ≤ 9, is redundant.
In fact, constraint C′′2 is saturated, meaning that it contains a predicate for every
pairwise constraint that can be inferred from it.

These examples show how the interdependencies between the predicates can lead
to paths in a DDD that are infeasible, as well as ones where different combinations
of terms can be mathematically equivalent. The developers of DDDs describe an
algorithm that eliminates infeasible paths by testing each one individually and re-
structuring the DDD when an infeasible path is found [49]. In the worst case, this
process can require time exponential in the size of the DDD, and it can also increase
its size. Once infeasible paths have been eliminated, then satisfiability becomes eas-
ily testable. The developers also propose several rules for dealing with redundant
tests, including ensuring that every path is saturated. This leads to a form that they
conjecture is canonical, although this has apparently never been proven. Fortunately,
most of the algorithms that use DDDs do not require having a canonical representa-
tion.

Several other decision diagrams have been devised specifically for model check-
ing of timed automata. Clock difference diagrams [41] coalesce the predicates of
difference decision diagrams, such that along any path there is a single node rep-
resenting all constraints among a given pair of variables xi and x j. This node has
multiple outgoing branches, corresponding to disjoint intervals representing possi-
ble values for xi− x j. Clock restriction diagrams [62] also have multiple branches
emanating from a single node associated with variables xi and x j, but these repre-
sent possible upper bounds on the value of xi− x j. (Lower bounds on this value are
represented as upper bounds on the value of x j− xi.)

Although the focus of much of the work in representing constraints among real-
valued variables was motivated by the desire to perform symbolic model checking
on timed automata, such constraints arise in other applications, as well. DDDs can
represent difference constraints of the form xi− x j ≤ c. Other constraints of inter-
est include box constraints of the form xi ≤ c, or more generally, arbitrary linear
constraints of the form a1 · x1 + a2 · x2 + · · ·+ an · xn ≤ c. Linear decision diagrams
extend DDDs to include such constraints [20]. With both DDDs and LDDs, it is
also possible to have nodes labeled by Boolean variables as well as ones labeled
by constraints. Such decision diagrams can be used when verifying hybrid systems,
containing both continuous and discrete state variables.

We can see a parallel between these different forms of decision diagrams and
SMT solvers (Chap. 6.) Just as SMT extends Boolean satisfiability solvers to im-
plement decision procedures for other mathematical theories, these generalizations
of decision diagrams extend OBDDs to symbolically represent functions over other
theories. Both must deal with cases where some combination of constraints is infea-
sible, leading to conflicts in SMT solvers and infeasible paths in decision diagrams.

Binary Decision Diagrams 21

10 Scaling OBDD Capacity

Although the introduction of OBDD-based symbolic model checking in the early
1990s provided a major breakthrough in the size and complexity of systems that
could be verified, the nature of our field and our desire to apply our tools to real-
world systems means that we will always seek to scale them to handle ever larger
and more complex problems. Computer systems continue to scale—individual ma-
chines have more memory, more cores, and larger disk capacity. In addition, we
routinely map problems onto larger clusters of machines that are programmed to
work together on a single task. One would expect BDD libraries to have evolved
to take advantage of these technological advantages, but unfortunately this is not
the case. Most widely used BDD packages still execute on a single core of a single
machine, and they are barely able to use the amount of physical memory available
on high-end machines. In this section, we highlight some of the efforts to scale the
capacity of OBDD implementations, and some of the challenges these efforts face.

In most applications of OBDDs, the ability to handle larger and more complex
problems is limited more by the size of the OBDDs generated, rather than the CPU
performance. In the extreme case, very large OBDDs can grow to exceed the mem-
ory capacity of a machine. On a 64-bit machine, storing the OBDD nodes and all of
the associated tables requires, on average, around 40 bytes per node. Thus a machine
with 16GB of RAM should, in principle, be able to support OBDD applications us-
ing up to around 400 million nodes. In practice, however, the performance of most
OBDD implementations becomes unacceptably slow well before that point, due to
poor memory-system performance. Traversing graphs in depth-first order (as occurs
with the recursive implementation of the Apply algorithm described in Sect. 5) tends
to yield poor virtual memory and cache performance, due a lack of locality in the
memory access patterns. Standard implementations of the hashtables used for the
unique table and the computed cache also exhibit poor memory locality.

Some efforts have been made to implement OBDDs with an eye toward mem-
ory performance [5, 51, 54, 64]. These typically employ breadth-first traversal tech-
niques and try to pack the vertices for each level into a contiguous region of memory.
A breadth-first approach also lends itself to an implementation where most of the
data are stored on a large disk array [39]. Unfortunately, none of these ideas seem
to have been incorporated into publicly available OBDD packages.

Early efforts to exploit parallelism in OBDD operations demonstrated the dif-
ficulty of this task. Most were implemented in a “shared nothing” environment,
where each processor has its own independent memory and can only communicate
with other processors via message passing. These implementations require some
strategy for partitioning the OBDD, so that each node is assigned to some proces-
sor. In a message-passing environment, traversing a graph that is partitioned across
machines requires message communications, versus the simply memory referenc-
ing that occurs on a single machine, and so the performance improvements due to
greater parallelism must overcome the potentially high cost of node referencing.
Implementations based on a random partitioning of the nodes [60] only showed
performance superior to a sequential implementation when the size of the graph ex-

22 Randal E. Bryant

ceeded the capacity of a single processor’s memory. In an attempt to minimize the
need for message passing, other implementations used a layered partitioning, where
the range of variable indices is divided into subranges, and all nodes within a given
subrange are mapped onto a single machine. Implementations that were specialized
to symbolic model checking could use a partitioning where different regions of the
state space were mapped onto different machines [34], following the principles of
partitioned OBDDs.

The recent availability of multicore processors supporting multiple threads exe-
cuting within a single memory space has revived interest in exploiting parallelism
in OBDD operations. There are two natural sources of parallelism: internal, in
which individual operations such as Apply uses multiple threads [26], and exter-
nal, in which a multi-threaded application can invoke multiple Apply operations
concurrently [52]. An implementation that uses only internal parallelism requires
no changes to the API, while those that support external parallelism can use some
mechanism, such as futures, to allow one thread to invoke an operation on OBDDs
that are still being generated by other threads.

With the entire OBDD and all of the tables held in a shared memory, any core
can access any node or table entry via a memory reference. Obtaining good perfor-
mance requires careful attention to memory locality and to the potential for thrash-
ing, where multiple threads compete to read and write a small number of cache
lines. Such thrashing can occur due to poor design of user data structures or due
to excessive calls to synchronization primitives. Excessive synchronization can also
lead to a loss of parallelism among the threads.

Perhaps the most ambitious effort on mapping an OBDD implementation onto
multicore processors has been by researchers at the University of Twente [26]. Their
system maintains a set of workers, each of which maintains a queue of tasks. The
system implements the Apply operation with a task for each recursive step. To per-
form the recursion, each task then spawns two new tasks, with one performed by the
current worker and the other added to the worker’s queue. Workers are kept busy by
having them execute the tasks in their own queues, and “stealing” tasks from other
queues when needed. As the computation unfolds, this overall approach will have
the effect of having many workers collaboratively executing the Apply operation
over different parts of the argument graphs. The system maintains a single unique
table and a single computed cache as a way of maintaining consistency and avoiding
duplicate efforts by the workers. By carefully designing these tables to use lockless
synchronization and cache-friendly data structures, they are able to achieve high
performance.

Building a multi-processor system with coherent shared memory becomes pro-
hibitively expensive as the system scales to thousands of processors. Thus, an impor-
tant challenge remains to devise OBDD implementations that can operate effectively
in a fully distributed, shared-nothing environment.

Binary Decision Diagrams 23

Comparison to SAT checking

We conclude with some observations about how OBDD-based reasoning systems
and propositional satisfiability (SAT) checkers have important similarities and dif-
ferences, both from conceptual and operational viewpoints. Clearly, both are related
in the sense that they solve problems encoded in Boolean form. On the other hand,
they differ greatly in their intended task—a SAT checker need only find a single
satisfying assignment to a Boolean formula, while converting a Boolean formula
to an OBDD creates an encoding that describes all of its satisfying solutions. Once
we have generated the OBDD representation, it becomes straightforward to perform
tasks that SAT solvers cannot readily do, such as counting the number of solutions,
or finding an optimal solution for some cost function. Furthermore, OBDDs support
operations, such as variable quantification, that have proved to be very challenging
extensions for SAT checking.

For most applications of satisfiability testing, SAT checkers based on the Davis-
Putnam-Logemann-Loveland (DPLL) algorithm [25, 24] (Chap. 5) greatly outper-
form ones that construct an OBDD and then call the SATISFY operation to gener-
ate a solution. There are some notable exceptions, however. For example, Bryant
conducted experiments on satisfiability problems to test the equivalence of parity
trees—networks of exclusive-or logic gates computing the odd parity of a set of n
Boolean values[17]. Each experiment tested whether a randomly generated tree was
functionally equivalent to one consisting of a linear chain of logic gates. We per-
formed tests using four state-of-the-art SAT solvers, but none could handle cases of
n = 48 inputs within a 900 second time limit. These parity tree problems are known
to be difficult cases for DPLL, or in fact any method based on the resolution princi-
ple. By contrast, an OBDD-based solver could readily handle such problems in well
under 0.1 seconds. Indeed, the OBDD representation of the parity function grows
only linearly in n.

This example illustrates the opportunity to devise SAT checkers that combine
top-down, search-based strategies, such as DPLL, with ones based on bottom-up,
constructive approaches, such as OBDDs. One approach is to replace the traditional
clause representation of SAT solvers with BDDs, where the task becomes to find
a single variable assignment that yields 1 for all of the OBDDs [23]. Beyond the
usual steps of a SAT solver, the solver can also replace some subset of the OBDDs
with their conjunction. This approach can deal with problems for which OBDDs
outperform DPLL (e.g., the parity tree example), while also getting the performance
advantages of DPLL-based SAT solvers.

Other connections between OBDDs and DPLL-based SAT solvers arise due to
the observation that the search tree generated by DPLL bears much resemblance to
a BDD: each selection of a decision variable in DPLL creates a vertex in the search
tree, with outgoing branches based on the value assigned to the variable. Depending
on the decision heuristic used, DPLL might follow a common variable ordering
across the entire tree, yielding a tree that obeys the ordering constraint of OBDDs,
or it may have different orderings along different paths. These are analogous to a

24 Randal E. Bryant

class of BDDs known as “free BDDs,” in which variables can occur in any order
from the root to a leaf in the graph, but no variable can occur more than once [33].

Huang and Darwiche exploit this relationship to modify an existing DPLL-based
SAT solver to instead generate the OBDD representation of a formula given in CNF
form [35]. They found this top-down approach to OBDD construction fared better
for formulas expressed in CNF than did the usual bottom-up method based on the
Apply algorithm. Along related lines, methods have been developed to analyze the
clausal representation of a formula and generate a variable ordering that should work
well for either SAT checking or for OBDD construction [3].

11 Concluding Remarks

Symbolic model checking arose by linking a model checking algorithm based on
fixed-point computations with binary decision diagrams to represent the underlying
sets and transition relations [9, 19, 22, 45]. This yielded a major breakthrough in
the size and complexity of systems that could be verified. Since that time, OBDDs
have been applied to many other tasks, but model checking remains one of their
most successful applications. Even as model checkers have been extended to use
other reasoning methods, especially Boolean satisfiability solvers, OBDDs have still
proved valuable for supporting the range of operations required to implement full-
featured model checkers.

Several major goals drive continued research on OBDDs and related representa-
tions. First, the desire to represent larger functions requires scaling OBDD imple-
mentations to exploit the memory sizes and multicore capabilities of modern pro-
cessors, as well as large-scale, cluster-based systems. Second, possible variants on
OBDDs may enable them to represent Boolean functions in more compact forms.
Finally, the desire to verify systems having state variables that range over larger dis-
crete domains, as well as infinite domains, provides a motivation to create types of
decision diagrams that can represent other classes of functions.

The resulting research efforts continue to yield novel ideas and approaches, while
taking advantage of the key property of OBDDs: that they can represent a variety of
functions in a compact form, and that they can be constructed and analyzed using
efficient graph algorithms. Future developments will certainly enhance the ability of
OBDD-based methods to support model checking.

References

1. Akers, S.B.: Binary decision diagrams. IEEE Transactions on Computers C-27(6), 509–516
(1978)

2. de Alfaro, L., Kwiatkowska, M., Parker, G.N.D., Segala, R.: Symbolic model checking
of probabilistic processes using MTBDDs and the Kronecker representation. In: S. Graf,

Binary Decision Diagrams 25

M. Schwartzbach (eds.) Tools and Algorithms for the Construction and Analysis of Systems,
Lecture Notes in Computer Science, vol. 1785, pp. 395–410 (2000)

3. Aloul, F.A., Markov, I.L., Sakallah, K.A.: Faster SAT and smaller BDDs via common function
structure. In: Proceedings of the International Conference on Computer-Aided Design, pp.
443–448 (2001)

4. Alur, R., Dill, D.: A theory of timed automata. Theoretical Computer Science 126(2), 183–235
(1994)

5. Ashar, P., Cheong, M.: Efficient breadth-first manipulation of binary decision diagrams. In:
Proceedings of the International Conference on Computer-Aided Design, pp. 622–627 (1994)

6. Aziz, A., Taşiran, S., Brayton, R.K.: BDD variable ordering for interacting finite state ma-
chines. In: Proceedings of the 31st ACM/IEEE Design Automation Conference, pp. 283–288
(1994)

7. Bahar, R.I., Frohm, E.A., Gaona, C.M., Hachtel, G.D., Macii, E., Pardo, A., Somenzi, F.:
Algebraic decision diagrams and their applications. In: Proceedings of the International Con-
ference on Computer-Aided Design, pp. 188–191 (1993)

8. Bollig, B., Wegener, I.: Improving the variable ordering of OBDDs is NP-complete. IEEE
Transactions on Computers 45(9), 993–1002 (1996)

9. Bose, S., Fisher, A.L.: Automatic verification of synchronous circuits using symbolic logic
simulation and temporal logic. In: Proceedings of the IMEC-IFIP International Workshop on
Applied Formal Methods for Correct VLSI Design, pp. 759–764 (1989)

10. Brace, K.S., Rudell, R.L., Bryant, R.E.: Efficient implementation of a BDD package. In:
Proceedings of the 27th ACM/IEEE Design Automation Conference, pp. 40–45 (1990)

11. Brayton, R.K., Hachtel, G.D., McMullen, C.T., Sangiovanni-Vincentelli, A.L.: Logic Mini-
mization Algorithms for VLSI Synthesis. Kluwer Academic Publishers (1984)

12. Brown, F.M.: Boolean Reasoning. Kluwer Academic Publishers (1990)
13. Bryant, R.E.: Graph-based algorithms for Boolean function manipulation. IEEE Transactions

on Computers C-35(8), 677–691 (1986)
14. Bryant, R.E.: On the complexity of VLSI implementations and graph representations of

Boolean functions with application to integer multiplication. IEEE Transactions on Com-
puters 40(2), 205–213 (1991)

15. Bryant, R.E.: Symbolic Boolean manipulation with ordered binary decision diagrams. ACM
Computing Surveys 24(3), 293–318 (1992)

16. Bryant, R.E.: Binary decision diagrams and beyond: Enabling technologies for formal ver-
ification. In: Proceedings of the International Conference on Computer-Aided Design, pp.
236–243 (1995)

17. Bryant, R.E.: A view from the engine room: Computational support for symbolic model check-
ing. In: 25 Years of Model Checking, Lecture Notes in Computer Science, vol. 4925 (2007)

18. Burch, J.R., Clarke, E.M., Long, D.E., McMillan, K.L.: Symbolic model checking for sequen-
tial circuit verification. IEEE Transactions on Computer-Aided Design of Integrated Circuits
and Systems pp. 401–424 (1994)

19. Burch, J.R., Clarke, E.M., McMillan, K.L., Dill, D.L., Hwang, L.J.: Symbolic model checking:
1020 states and beyond. Information and Computation 98(2), 142–170 (1992)

20. Chaki, S., Gurfinkel, A., Strichman, O.: Decision diagrams for linear aritmetic. In: Formal
Methods in Computer-Aided Design, pp. 53–60 (2009)

21. Ciardo, G., Marmorstein, R., Siminiceanu, R.: The saturation algorithm for symbolic state-
space exploration. International Journal of Software Tools and Technology Transfer 8, 4–25
(2006)

22. Coudert, O., Berthet, C., Madre, J.C.: Verification of synchronous sequential machines based
on symbolic execution. In: Proceedings of the Workshop on Automatic Verification Methods
for finite state systems, pp. 365–373 (1989)

23. Damiano, R., Kukula, J.: Checking satisfiability of a conjunction of BDDs. In: Proceedings
of the 40th ACM/IEEE Design Automation Conference, pp. 818–923 (2003)

24. Davis, M., Logemann, G., Loveland, D.: A machine program for theorem-proving. Commu-
nications of the ACM 5(7), 394–397 (1962)

26 Randal E. Bryant

25. Davis, M., Putnam, H.: A computing procedure for quantification theory. J.ACM 3, 201–215
(1960)

26. van Dijk, T., Laarman, A.W., van de Pol, J.C.: Multi-core BDD operations for symbolic reach-
ability. In: 11th International Workshop on Parallel and Distributed Methods in Verification
(2012)

27. Drechsler, R., Günther, W., Somenzi, F.: Using lower bounds during dynamic BDD minimiza-
tion. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems 20(1),
51–57 (2001)

28. Drechsler, R., Sieling, D.: Binary decision diagrams in theory and practice. International
Journal on Software Tools for Technology Transfer 3(2), 112–136 (2001)

29. Friedman, S.J., Supowit, K.J.: Finding the optimum variable ordering for binary decision dia-
grams. IEEE Transactions on Computers 39(5), 710–713 (1990)

30. Fujita, M., Fujisawa, H., Kawato, N.: Evaluation and improvements of Boolean comparison
method based on binary decision diagrams. In: Proceedings of the International Conference
on Computer-Aided Design, pp. 2–5 (1988)

31. Fujita, M., McGeer, P.C., Yang, J.C.: Multi-terminal binary decision diagrams: An efficient
data structure for matrix representation. Formal Methods in Systems Design 10, 149–169
(1997)

32. Garey, M.R., Johnson, D.S.: Computers and Intractability. W. H. Freeman and Company
(1979)

33. Gunther, W., Drechsler, R.: Minimization of free BDDs. In: Proceedings of ASP-DAC ’99,
pp. 323–326 (1999)

34. Heyman, T., Geist, D., Grumberg, O., Shuster, A.: Achieving scalability in parallel reacha-
bility analysis of very large circuits. In: Proceedings of the 12th International Conference of
Computer Aided Verification, Lecture Notes in Computer Science, vol. 1855, pp. 20–35 (2000)

35. Huang, J., Darwiche, A.: Using DPLL for efficient OBDD construction. In: Theory and Ap-
plications of Satisfiability Testing, Lecture Notes in Computer Science, vol. 3542, pp. 157–172
(2005)

36. Jeong, S.W., Plessier, B., Hachtel, G.D., Somenzi, F.: Variable ordering for FSM traversal. In:
Proceedings of the International Conference on Computer-Aided Design (1991)

37. Kam, T., Villa, T., Brayton, R.K., Sangiovanni-Vincentelli, A.L.: Multi-valued decision dia-
grams: Theory and applications. Multiple-Valued Logic 4(1–2), 9–62 (1998)

38. Knuth, D.S.: The Art of Computer Programming, Volume 4: Combinatorial Algorithms. Ad-
dison Wesley (2011)

39. Kunkle, D., Slavici, V., Cooperman, G.: Parallel disk-based computation for large, monolithic
binary decision diagrams. In: International Workshop on Parallel and Symbolic Computation,
pp. 63–72. ACM (2010)

40. Kwiatkowska, M., Norman, G., Parker, D.: PRISM: Probabilistic symbolic model checker.
In: Computer Performance Evaluation: Modelling Techniques and Tools, Lecture Notes in
Computer Science, vol. 2324, pp. 113–140 (2002)

41. Larsen, K.G., Pearson, J., Weise, C., Yi, W.: Clock difference diagrams. Nordic Journal of
Computing 6(3), 271–298 (1999)

42. Madre, J.C., Billon, J.P.: Proving circuit correctness using formal comparison between ex-
pected and extracted behaviour. In: Proceedings of the 25th ACM/IEEE Design Automation
Conference, pp. 205–210 (1988)

43. Malik, S., Wang, A., Brayton, R.K., Sangiovanni-Vincentelli, A.L.: Logic verification using
binary decision diagrams in a logic synthesis environment. In: Proceedings of the International
Conference on Computer-Aided Design, pp. 6–9 (1988)

44. McDonald, C.B., Bryant, R.E.: CMOS circuit verification with symbolic switch-level timing
simulation. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems
20(3), 458–474 (2001)

45. McMillan, K.L.: Symbolic Model Checking. Kluwer Academic Publishers (1993)
46. Michie, D.: “memo” functions and machine learning. Nature 218, 19–22 (1968)
47. Minato, S.: Zero-suppressed BDDs for set manipulation in combinatorial problems. In: Pro-

ceedings of the 30th ACM/IEEE Design Automation Conference, pp. 272–277 (1993)

Binary Decision Diagrams 27

48. Minato, S.I., Ishiura, N., Yajima, S.: Shared binary decision diagrams with attributed edges
for efficient Boolean function manipulation. In: Proceedings of the 27th ACM/IEEE Design
Automation Conference, pp. 52–57 (1990)

49. Møller, J., Lichtenberg, J., Andersen, H., Hulgaard, H.: Difference decision diagrams. In:
J. Flum, M. Rodriguez-Artalejo (eds.) Computer Science Logic, Lecture Notes in Computer
Science, vol. 1683, pp. 826–826 (1999)

50. Narayan, A., Jain, J., Fujita, M., Sangiovanni-Vincentelli, A.L.: Partititoned OBDDs—a com-
pact, canonical, and efficiently manipulable representation for Boolean functions. In: Pro-
ceedings of the International Conference on Computer-Aided Design, pp. 547–554 (1996)

51. Ochi, H., Yasuoka, K., Yajima, S.: Breadth-first manipulation of very large binary-decision
diagrams. In: Proceedings of the International Conference on Computer-Aided Design, pp.
48–55 (1993)

52. Ossowski, J.: JINC—a multi-threaded library for higher-order weighted decision diagram ma-
nipulation. Ph.D. thesis, Rheinischen Friedrich-Wilhelms-Universität Bonn (2009)

53. Panda, S., Somenzi, F.: Who are the variables in your neighbourhood. In: Formal Methods in
Computer-Aided Design, pp. 74–77 (1995)

54. Ranjan, R.K., Sanghavi, J.V., Brayton, R.K., Sangiovanni-Vincentelli, A.L.: High performance
BDD package based on exploiting memory hierarchy. In: Proceedings of the 33rd ACM/IEEE
Design Automation Conference, pp. 635–640 (1996)

55. Rudell, R.L.: Dynamic variable ordering for ordered binary decision diagrams. In: Proceed-
ings of the International Conference on Computer-Aided Design, pp. 139–144 (1993)

56. Schröer, O., Wegener, I.: The theory of zero-suppressed BDDs and the number of knight’s
tours. Formal Methods in Systems Design 13(3), 235–253 (1998)

57. Sieling, D.: On the existence of polynomial time approximation schemes for OBDD minimiza-
tion. In: Symposium on Theoretical Aspects of Computer Science, Lecture Notes in Computer
Science, vol. 1373, pp. 205–215 (1998)

58. Sieling, D., Wegener, I.: Reduction of OBDDs in linear time. Information Processing Letters
48(3), 139–144 (1993)

59. Somenzi, F.: Efficient manipulation of decision diagrams. International Journal on Software
Tools for Technology Transfer 3(2), 171–181 (2001)

60. Stornetta, T., Brewer, F.: Implementation of an efficient parallel BDD package. In: Proceed-
ings of the 33rd ACM/IEEE Design Automation Conference, pp. 641–644 (1996)

61. Tani, S., Hamaguchi, K., Yajima, S.: The complexity of the optimal variable ordering problems
of shared binary decision diagrams. Algorithms and Computation 762, 389–398 (1993)

62. Wang, F.: Efficient verification of timed automata with efficient BDD-like data structures.
International Journal of Software Tools for Technology Transfer 6(1), 77–97 (2004)

63. Yang, B., Bryant, R.E., O’Hallaron, D.R., Biere, A., Coudert, O., Janssen, G., Ranjan, R.K.,
Somenzi, F.: A performance study of BDD-based model checking. In: Formal Methods in
Computer-Aided Design, Lecture Notes in Computer Science, vol. 1522 (1998)

64. Yang, B., Chen, Y.A., Bryant, R.E., O’Hallaron, D.R.: Space- and time-efficient BDD con-
struction via working set control. In: Proceedings of ASP-DAC ’98, pp. 423–432. Yoko-
homa,Japan (1998)

65. Yoneda, T., Hatori, H., Takahara, A., Minato, S.: BDDs vs. zero-suppressed BDDs for CTL
symbolic model checking of Petri nets. In: Formal Methods in Computer-Aided Design, Lec-
ture Notes in Computer Science, vol. 1166, pp. 435–449 (1996)

