Learning to Select State Machines using Expert Advice
on an Autonomous Robot

Brenna Argall Brett Browning Manuela Veloso
The Robotics Institute The Robotics Institute Computer Science Department
Carnegie Mellon University Carnegie Mellon University Carnegie Mellon University
Pittsburgh, PA 15213 Pittsburgh, PA 15213 Pittsburgh, PA 15213
bargall@cs.cmu.edu brettb@cs.cmu.edu mmv@cs.cmu.edu

Abstract—Hierarchical state machines have proven to be a the algorithm on a real robot platform, and compare its
powerful tool for controlling autonomous robots due to their performance to that of Exp3 in simulation. The real robot im-
flexibility and modularity. For most real robot implementations, plmenentation uses the Segway RMP robots [10] performing

however, it is often the case that the control hierarchy is . .
hand-coded. As a result, the development process is often a task integral to robot soccer and makes use of a hierarchy

time intensive and error prone. In this paper, we explore Of state machines that we cakills [6].
the use of an experts learning approach, based on Auer and Our paper is structured in the following way. In the
colleagues’ Exp3 [1], to help overcome some of these limitations. ensuing section, we describe hierarchical state machines,
In particular, we develop_a modified learning _algorlthm, which as applied to robot control, that will form the basis for
we call rExp3, that exploits the structure provided by a control
hierarchary by treating each state machine as an ’expert’. this pa}per. We then dgsqube the Exp3 algorlt'hm, and its
Our experiments validate the performance ofrExp3 on a real ~ €xtension to integrate within a robot control architecture. We
robot performing a task, and demonstrate that rExp3 is able additionally outline our modified algorithm, calleBxp3 for
to quickly learn to select the best state machine expert to enhanced responsiveness to discrete environment changes.
execute. _Through our investigations in these environments, Based on this, we present our implementatiomEép3on a
we identify a need for faster learning recovery when the .
relative performances of experts reorder, such as in response real rqbot. platfqrm, and compare Its.performance t‘? that of
to a discrete environment change. We introduce a modified EXp3 in simulation. We then close with our conclusions.
learning rule to improve the recovery rate in these situations
and demonstrate through simulation experiments thatrExp3 [I. STATE MACHINES FOR ROBOT CONTROL
performs as well or better than Exp3 under such conditions. In this section, we describe our use of hierarchical state
machines for autonomous robot control. Alternate implemen-
. INTRODUCTION tations of state-based control are described in [12]. We
There are a number of established approaches for dermally define a state machine for control as consisting of a
veloping a control architecture for generating autonomouset of control statess; € C'S. Each control state encodes a
mobile robot behavior. A common and powerful approacleontrol policy 7;, which is a function of the robot’s internal
is to use hierarchies of finite state machines [2], [5], [6]state and its beliefs about the world (i.e. is a result of its
whereby control consists of finite state machines that opergperception system). This policy; determines which action
in parallel, or that use other state machines as macros dpc A to take, when in control states;.
generate complex actions. Although many frameworks exist, Transitions between different control states occur as a
they typically require extensive hand-coding when applie€unction of the robot's beliefs. Additionally, this state ma-
to real robot control problems. That is, the designer ishine may terminate (i.e. enter an absorbing state) with suc-
responsible for creating the state machine hierarchy, and thess or failure. A state machine may therefore be viewed as
control policies and parameters encoded in each control stapeoviding deliberative goal-driven behavior, that will either
This is a time consuming and error prone process and offel or succeed and achieve the goal. For ease of reference,
that does not scale well with increasing complexity of thend following [6], we will refer to such a state machine as
robot or tasks. a skill. Thus, the term skill in this paper is equivalent to a
We seek practical learning techniques that can aid, goal-directed state machine for control, and the two terms
replace, this process, thereby enabling more complex robotdll be used interchangeably.
and tasks. In this paper, we make two key contributions. First, State machines may be arranged itierarchies Two
we present an experts-based algorithm for learning to selemttions types are available for selection by a control policy:
between state machines that can be integrated with a workingmplex or primitive. A complex action consists of calling
robot control hierarchy, built upon the algorithm Exp3 [1].another control policy, and thus passing control to another
Our second contribution extends Exp3 further, which weatate machine. This builds a hierarchy of state machines
here introduce asExp3 to enable a more rapid response tqequivalently a hierarchy of skills). By contrast, primitive
changes in expert performance that are of a discrete natuaetions command the robot using its available control prim-
To evaluate our approach, we explore the performance itives (e.g. velocity control). Note, that state machines may

also execute in parallel, with or without synchronizatiorskills that have varying strengths and weaknesses, and let the
coupling their execution. However, this is beyond the scopexpert learning automatically determine which skill should
of this paper and will not be considered further. be run to achieve maximum performance (see Fig. 2).

1. LEARNING WITH EXPERT ADVICE

Expert learning (or thek-armed bandits problem, orig-
inally proposed by [11]) addresses the issue of choosing
between multiple action recommenders,experts at each
time step. Based upon the idea of slot machine gambling, the
agent must choose an arm (expert) to pull , and then receives
Fig. 1. An example soccer-related skill hierarchy. The robot will searcin associated pay off (reward). High reward, and therefore
for the ball, and then run up and grab it. Transitions are conditioned on tfgood performance, increases an expert’s probability of being
robot’s perceptual beliefs. selected at each round.

State machines may transition to, oall, other state =~ We define formally a learning scenario where at each
machines, thus building a skill hierarchy. Figure 1 showslecision cyclef, each of then experts makes a recommen-

a schematic of a small hierarchical state machine for comtation. The algorithm selects a single expert and executes the
trolling a robot performing a basic soccer skill. The robot'scorresponding action, resulting in a payoff«df ¢ . After

task is to grab the nearest ball it can find. It must first searahdecision cycles, a sequenceidt 2, --- | r? payoffs have

for the ball, and run up to grab it once found. The powebeen rewarded. The aim of expert learning is to select the best
in a skill hierarchy lies in its task decomposition; that isexpert over all decision cycles. We formulate this learning
by enabling a larger task to be easily decomposed into subbjective in terms of regret, where the regret at decision cycle
tasks that can be solved as independent problems (namelyis the difference between the observed rewafrdof the
search andget ball within this example). Moreover, selected action, and the rewarfi we would have received
each of the resulting skills may be reused for other similafirom the best expert. Summed over all decision cycles,
problems. It is this 'divide and conquer’ ability that makes d d

state machines so useful for robot control. The drawback to Regret = Z e — Z r*. (1)

this approach is that for a real robot, the control architecture k=1 k=1

IS (_)fter_1 he_m_d coded. Typically, it is n_ot task decomposmon-rhe goal of expert learning is to minimize this total regret.
which is difficult. Rather, most of designer effort focuses on When the chosen action executes on a real robot, how-
developing the control policies which call primitive actionsever, only the reward for the recommending expert may
(for example, the statgo near in Fig. 1 calls a primitive be observed. Fortunately, the algorithm ExpBxfonential-
velocity action before transitioning tgrab). Moreover, the weight algorithm forExgoration andExgoitation”), intro-
performance of skills using such policies is highly dependerfuced by Auer and colleagues in [1], addresses exactly this
on robot hardware and the environment. issue. Exp3 handles partial information games, where at each

- trial only the reward gained by the chosen expert, and not
& D

ok
by every expert, is observed. The algorithm is a modification

fail of the HEDGE experts learning algorithm [1], [8], which is

<] Search #1 founded upon the weighted majority algorithm of [9] and
o~ _%K] search #2 aggregating strategies of [13].
Ol gearch #N In Exp3, the reward earned at decision cyklés scaled
inversely with the expert's selection probabilifyr(z* =
fail i) for that decision cycle, to compensate the fact that in

a partial information game, experts with low probability
e infrequently chosen and therefore have fewer observed
rewards. Thus the reward earned at tkaby experti is

In this paper, we aim to provide adaptability to the robot k
through the use of an experts learning algorithm. The key = ﬁ (2)
. ; : : . r(ak =1)
idea is as follows. Let us first view each state machine,
or skill, as an expert that recommends’ a control policy for the selected expert, and zero for all other experts. [1]
to achieve a particular goal. Suppose also, that we ha‘%oved that this regret approaches zero in the limit, assuming

multiple skills available for achieving the same goal. If thes@PPONeNts with static policies. _ ,
skills vary in their use of perception or more generally in. More cohcretely, the probability of.c.hoosmg gxperat
their control policies, their performance characteristics (ié!me stepk is governed by the normalizing equation
success/failure rates) will be different. Thus, we can use Pr(zt = i) = wf‘l @)
expert learning to determine which ’expert’ skill should be '

executed to maximize performance for the current domian.

Fig. 2. Experts learning applied to state machines enables multiple skil
to be developed, and the best one learned for a given environment.

k—1
225 Wj

In summary, we can free up the designer to create a range @fherew? ! = eXx " is the weight of expert at time

k — 1. Weights are initialized to be equal across experts, arurobability of selecting A should outrank that of selecting B.
the weight of an executed expeéris updated according to: If the robot then goes out of doors and onto bumpy grass, this
change in the world would alter each expert’s performance.
As expert B outperforms expert A, the learning algorithm
Here the multiplierm* = "t follows the notation of [3] Should respond by eventually ranking the probability of
for update simplicity. Note that the product of the weight aselecting B above that of selecting A.

decision cyclek —1 and the exponentiated multiplier at cycle Within Exp3, experts which have performed poorly in
k is the same as adding to 3", ff‘l, and thus represents the past are rewarded more strongly for good performance
the cumulative reward received by expénp to trial . than experts which performed well in the past. This occurs
because of the ratio, within the weight update (4), which
IV. EXPERTS LEARNING FOR SKILL SELECTION = gcqjes reward inversely with selection probability. For an

We now examine how to utilize expert learning in aexpert with low selection probability (indicating poor past
hierarchical state machine (or skill hierarchy) for roboperformance), this ratio is larger than that of an expert
control. Concretely, we address the problem of learning teith high selection probability (indicating good past perfor-
select the best skill, which we cadkill selection That is, mance). An expert with a previously low probability of being
from within our current execution of a skill, and given itsselected, but which now performs well, may therefore have
current control state, which is the best state machine to catt weight increased quickly in this manner.
next (see Fig. 2). The idea behind this approach is that if a This adaptability idea, however, is fully captured by the
designer creates multiple skills to accomplish the same tadkxp3 algorithm only when an expert succeeds. For example,
the robot will then be able to automatically determine theonsider instead a high probability expert which now fails,
best skill to use given the current conditions. and so no longer performs as it had in the past. Its weight

We define the higher-level skill as the parent skill, and thehould represent performance under the current world condi-
state machines which it may call as the child skills. At eackions, and should therefore decrease. To follow the reasoning
decision cycle, the parent skill chooses a new child skithbove, this decrease should occur quickly. However, in this
to execute. Upon termination of the child skill, a rewardcase the scaling ratio decreases the effect of poor reward on
is assigned to that skill. Its execution is evaluated basedtie weight update, and the weight will actually change only
on success or failure; that is, the two absorbing states am@nimally.
assigned a payoff. Futhermore, each binary reward may beWe generalize this adaptability idea by saying tleat
modified to incorporate a measure of execution quality. Ipected expert performances should result small weight
our particular implementation, a quality measure based arhanges, whileinexpecteexpert performances should result
execution time was added; faster executions earned madrelarge weight changes. Concretely, we catagorize expert
reward than slower executions. This modification was appliggerformances” as successful (1) or failed (0), and selection
to the binary success reward exclusively, since the failuggrobabilities as highPr(z* = i) > §;, or low Pr(z* = i) <
absorbing state was only entered after a timeout and thus &ll 0 < §; < J, < 1. We then define expert performance
failed executions performed equally by this measure. classifications according to Table 1.

We thus have a framework ameniable to the experts
learning approach; namely, each child skill is an expert th“tPr(x
we select with some probability. In particular, we exploit the
hierarchical state machine structure by tagging termination
conditions with a reward. It is the existence of this structure TABLE I Classification of Expert Performance
which enables our learning. Based on the payoff from the Note the similarity between this idea and the Win or Learn
selected expert/skill, we modify its future selection probarast (WoLF) approach presented by [4] for learning agents
bility using equation (4). We validate this approach on a regarticipating in zero sum competitive games. In WOoLF,
robot in Section 5. agents that are loosing (ie. not performing as expected) learn

A. Adapting to Discrete Performance Changes at a faster rate, while those that are winning (ie. performing
as expected) learn at a slower rate.

The algorithm Exp3 has an additional feature, that it .
promotes adaptability within non-stationary environmentd3- The rExp3 Algorithm
In particular, we consider situations that cause a discrete, To further enhance adaptability, we want expert weights to
non-continuous change in the probability distribution whichupdate based upon whether they reflect the expected perfor-
describes expert performance. That is, some change in thrance of their recommendation. We introduce the algorithm
world causes the performance of each expert to change su&xp3 (responsiveExp3) to encourage swift reactions to
that it reorders their relative selection probability rankingunexpected expert performances. In particular, our goal is
For example, suppose expert A recommends command ue- strengthen the link between selection probability and
locities for the robot which are best suited for smooth grounagxpected performance. To accomplish thiExp3 modifies
while the recommendations of expert B are best suited fd&Exp3 to depend the weight updates explicitly upon expert
rough terrain. When operating indoors on a flat surface, tHailure or success.

1
wh = wh (mk)Prer=n 4)

Expected Unexpected
F=i)>o,ANsF=1] Pr(@®*=14) >, ns"=0
PrizF=i)<qAsdF=0 | Prz¥=i)<snsk=1

Key to our algorithm modification is to introduce two To illustrate the effectiveness dExp3on a robotic system,
distinct formulations for the weight update multiplier, onewe applied the algorithm to the example task of learning the
each for whether an expert succeeds or fails. This distinctidsest ball searching routine. Seven experts were implemented,
occurs in two places within the weight update; the exponenthich were distinguished by the cameras from which they
on the multiplierm? and the reward earned by the experdrew perception information to identify the ball.
performance. Pan-Tilt

The weight update of a chosen expértat trial &k is

. . . Camera
determined according to the following rule,
_ 1
wj = wi ™ (m)? (5)
Pr(zF =) if success Wide Angle
- C
g 1-— Pr(xk =1) if failure amera

Furthermore, we incorporate two distinct reward metrics,
allowing their specific formulation to be task-determined, but

requiring that a failure case reward be strictly less than 0, Fig. 3. Our Segway RMP soccer playing robot.
and a success case reward be strictly greater than 0. In thisD I 4 und Id giti In th
manner a failed execution always reduces the weight of a ata were collected under two world conditions. In the

given expert, while a successful execution always increasg8Cce! scenariahe ball was passed around the robot by
Tg- human riding a Segway HT, to relate learning back to the

the weight of a given expert. Recalling that? = e, . .
the strength of the exponent on this multiplier thereforé‘?bOt soccer domain. The ball th_erefore appeared at varying
determines the strength of the reward’s ability to reduce cq,lstqnces and states_ of occlus[on, possibly stop'ped.or n
increase expert weight. motion. In the occlusion scenarica controlled switch in
gamera occlusion was performed, to examine appropriate and

Failure-case expert outcomes are now properly represent K adantability t . t ch Bv phvsicall
within the weight update, such that unexpected performanc #'C _adapta liity to an environment ¢ ange. by physically
cking the camera lens, the ball was visible to exclusively

have larger changes in weight than expected ones. Returni§ for the first i fal . d
to our example of the unexpected failure of an expert wit € camera for Ihe Tirst portion of a fearing run, an

high probability, within its weight update the multiplier €XClusively the other for the remainder.
exponent § — [l — Pr(z* = §)]-!) will be large. Since The reward metric for our implementation was dependent

0 < mF < 1 (due to negative reward), a larger ex Onengpon both expert success and execution speed. Within the
on th?slimulti lier means g laraer reduct,ion in 8vei htpThus ontext of our example skill, this represents the importance
P 9 gnt. not only finding the ball, but finding it quickly. The initial

ihe unexepected performance results in & significant Weigggtermination of success or failure was binary. The success

re?UCt'OT’ af twe t|kr]1ten|ded._ f K direct obi case reward was then further subject to discounting ligr
n contrast to other learning frameworks, our direct objecg, ., .o steps of execution,

tive is not to learn the best action for a given state. Discrette
segmentation of real robot worlds can quickly produce a mk — { 1+ \d, if success

computationally inhibatory number of states. Instead, we ! dy if failure.

learn the best expert to achieve a goal and expect that what , i i)

is 'best’ will change with state, without reasoning expIicitIySchgsus"’]}lrﬁnéggclﬁggf,];xgr?&t S\{Y‘?Clt ;‘t(sjeitrggls% I\/r\]/%e?asi?e&lvgg-
about our current state. We respond to discrete Changes.é@utions, we requirel, > 0 and0 < d; < 1 (here A =
state by responding to changes in expert performance. DO'B.

98,d, = 0.3,d; = 0.7). For impl tation simplicit
. . o ; ,ds 3, dy 7). plementation simplicity,
SO quickly is the motivation for extending Exp3 tBxp3 we dealt directly with the multiplierm!? = et present in

V. ALGORITHM VALIDATION ON REAL ROBOTS our Welght update, rather than the actual reV\ded

We now present results from the integration of our apB. Robot Results

proach into the control architecture of a robot doing a task The algorithmrExp3 was able to properly and flexibly
drawn from robot soccer. To clarify, we refer to a singlgearn which ball search routines to execute.
execution of an expert as taial, and to a series of trials wjthin the soccer scenario, the experts preferred by
over which learning is performed asran. the learning algorithm agreed with those which performed
fastest, as determined by baseline data collected without
learning. From this baseline data we qualitatively classify
The robot learning data was collected on a Segwathe experts into three performance catagories, where Experts
RMP [10]. The Segway RMP is a dynamically balancind)-2 perform well, Experts 3-4 perform moderately, and
robot which in this case was outfitted to play soccer [7]Experts 5-6 perform poorly. Note that these classifications
Included in our augmentations are two cameras for sensirgply only to soccer scenario world conditions, and will
(Fig. 3), which identify the ball for our example skill. not necessarily hold when cameras are obstructed within

A. Robot Implementation

the occlusion scenario. Figure 4A presents a single exampleOur intent was to gather data at a simulated environment
learning run, where the learned expert (Expert 1) was alswitch, but to do so in a controlled manner. We therefore
one which performed well during baseline data collection. began our data collection at this switch, and simulated prior
Probability of Selecting Expert learning by biasing the initial selection probabilities to favor
a single expert. Each expert consequently had an associated
(A) 0.90 — HeH H ili 0o _ - H H

_— initial selection probabilityPr(z® = i) as well as its failure

/r” probability, the combination of which determined the clas-
/_/\,/"‘v sification of expert performance as expected or unexpected
according to Table 1.

Probability

o o c 2 o o
oL ok @ oD &
8 8 & 3 3 3

/

2 o N— B. Simulation Results
T o \ELSZE; In the comparison ofExp3to Exp3, our simulation results
(B) Probability of Selecting Expert et show both faster recovery and lower regret for unexpected
" Expert 5 performances, as well as similar regret for expected perfor-
Bxpent & mances. Data were collected over 100 runs of 50 trials each
for expected and unexpected scenarios, as well as 50 runs

of 50 trials with no learning, to provide a baseline against

; which each learning algorithm might be compared.

010;{:7:
0.00

Trials 12]

Probability

Trials to Unlearn Average Regret

|
— 1

| P

Trials

Regret

]

9

Fig. 4. SinglerExp3 robot learning runs, soccer (A) and occlusion (B) 6
scenarios. The vertical line in B indicates a discrete environment change. 5
1]

In the occlusion scenario, the algorithixp3was able to) Reward Reward
recover from the switch in occluded cametar6 +0.5 trials (A) (B)
to recover). Figure 4B presents a single example learning Average Regret

run, where at first Expert 5 dominates. Expert 5 is an expert [] Baseline [
which depends upon the camera which will be occluded aftet W Exp3
the switch (vertical line). Following the switch, accordingly, B s
an expert which does not depend upon this camera (Expel

1) comes to dominate.

Regrel
P

B

Reward

©

VI. ALGORITHM VALIDATION IN SIMULATION

To further test the performance @oExp3 both of the
algorithmsrExp3and Exp3 were implemented in simulation.Fi9- 5. Average results of baseline (no learning), Exp3 aBep3
e . . . simulation learning dataUnexpected performangdrials to recovery (A)
Our goal was that the modification introduced fExp3 and average regret (B¢xpected performanaererage regret (C). Error bars
would compare to Exp3 in the following manner: for all show one standard deviation.
« Faster recovery (defined below), when the performance 1) Faster Recovery (Unexpected Performancesignifi-
was unexpected cantly fewer time steps were required fid¥xp3 compared
» Lower regret, when the performance wasexpected to Exp3, to respond to a previously well performing expert
« Similar regret, when the performance wasected which now fails (trials to recover forExp3 = 7.74 vs.
Exp3=12.52, t = 4.14, 99.9% confidence interval 3.26,
Fig. 5A). Recovery was defined as the time step at which a
Within our simulation implementation, experts recom-favored expert no longer had the highest probability of being
mended actions in worlds constructed such that their perfoselected.
mance might clearly be classified as expected or unexpected2) Lower Regret (Unexpected PerformanceBie overall
Specifically, our simulation mimicked the ball searchingegret of rExp3 was significantly lower than that of Exp3
task of the real robot implementation. There were agaiwhen an expert performed unexpectedly, particularly when
seven experts distinguished by the camera combinations fram expert which previously performed well began to fail
which they drew perception information. Each expert haregret onrExp3 = 2.33 vs. Exp3= 3.21, t = 3.1, 99.5%
an associated failure probabiliti’r(z* = 0), which was confidence intervaR.68 — 3.26, Fig. 5B). Both learning
determined by the world and based upon whether a currendygorithms perform significantly better than the baseline
occluded camera was depended upon by the expert. All leamtata which utilized no learningrExp3 ¢ = 18.39, Exp3
ing parameters were set as in the real robot implementation= 9.24, 99.9% confidence interval> 3.26).

A. Simulation Implementation

3) Similar Regret (Expected Performancéhe difference of an expert lies at either extreme. From our empirical
in regret between the two algorithms was not significanbbservations, such extreme oscillations rarely occured.
when expgrts exhibited expected performances and required VIIl. CONCLUSIONS
no relearning (regret omExp3 = 0.44 vs. Exp3= 0.39,

t = 0.81, 75.0% confidence intervad.68 — 1.30, Fig. 5C). We have presented an adapted experts approach for learn-

By contrast, the difference in regret between each learni |

g the execution control loop on a robot system, and demon-
algorithm and the baseline data which used no |eami,.§rate its effectiveness on a real robot system. We introduce
was significant for eachrExp3 ¢ = 39.05, Exp3t =

a modified experts learning algorithm, which we a&kp3

38.82, 99.9% confidence intervat 3.26). based upon the Exp3 algorithm of Auer and colleagues [1],
to enhance responsiveness to discrete environment changes.
The effectiveness of this modification is presented with
comparisons betweerExp3 and Exp3 within simulation,

The algorithmrExp3 modifies Exp3 by addressing expertin addition to the implementation afExp3 on a Segway
failure or success explicitly within the weight update. Infobot. When a learned good expert begins to fail, we have
adopting two distinct reward scalings and exponent formwshownrExp3 to both accumulate smaller overall regret and
lations, our intent is to strengthen the link between expettinlearn’ this expert faster, and to behave similarly to Exp3
performance and selection probability. otherwise. In future work, we intend to apply this algorithm

Relating this modification back to the original inverseto skill selection in other soccer scenarios, particularly when
scaling motivation of Auer and colleagues, the failure cas@ response to strategy decisions of the opponent team.
scaling for a high probability expert might be seen as a IX. ACKNOWLEDGMENTS
prediction on future reward frequency. A high probability

expert which begins to fail also begins to drop in selectio
1

VIlI. DISCUSSION

This work was supported by United States Department of
probability. Scaling with 1 < in a sense rfhe Interior under Grant No. NBCH-1040007. The content of
: 1—Pr(zF=i) = Pr(zF=i) the information in this publication does not necessarily reflect

already begins to compensate for the predicted fewer futU{ﬁe position or policy of the Defense Advanced Research

selections of this exper.t, and therefore also for the decreaseF;p jects Agency (DARPA), US Department of Interior, US
future reward observations. The same may be reasoned abqu o .

.) : B o o overnment, and no official endorsement should be inferred.
the inverse scaling wittPr(z* = 4) in the low probability

success case, present within both algorithms. REFERENCES

Past work with Exp3 tested the algorithm in environments1] peter Auer, Nicol'o Cesa-Bianchi, Yoav Freund, and Robert E.
different to those presented here, namely against an all- Echgpire- b?ambling inha ri@J@JedI casino: The adversarigll multiar;n

: : . : andit problem. In36th Annual Symposium on Foundations o

knowing adversary [1]. If tested in similar environments to Computer Sciencepages 322-331, Milwaukee, W, 1995,
the past work of Exp3, we expect dExp3 would perform at[2] T. Balch, G. Boone, T. Collins, H. Forbes, D. MacKenzie, and
least as well as Exp3. Our reasoning is twofold. First, in our J. Santamaria. lo, ganymede and callisto: A multiagent robot trash-
simulation results for scenarios with no explicit unexpecteﬁ3 collecting team Al Magazine 16(2):39-53, 1995,

; . Michael Bowling, Brett Browning, and Manuela Veloso. Plays as
performances, the algorithms responded similarly. Second,” effective multiagent plans enabling opponent-adaptive play selection.

particularly within the context of an all knowing adversary, In Proceedings of International Conference on Automated Planning

: : _and Scheduling (ICAPS'04R004. in press.
dExp3 would adapt quicker to those changes in the adver4 Michael Bowling and Manuela Veloso. Convergence of gradient

sary’s strategies which resulted in the poor performance 0% dynamics with a variable learning rate. Pmoceedings of ICML-20Q1
a previously successful expert. Worst case scenario would pages 27-34, Williams College, MA, June 2001.

.] R. A. Brooks. A robust layered control system for a mobile robot.
be if the adversary altered strategy at a rate such that the IEEE Journal on Robotics and AutomatioRA-2(1), 1986.

change in relative expert weights was strong witHixp3 [6] B. Browning, J. Bruce, M. Bowling, and M. Veloso. STP: Skills,
but relatively stable within Exp3. Under such circumstances, tactics and plays for multi-robot control in adversarial environments.

IEEE Journal of Control and Systems Engineeri@g04.
however, we expect that the strategy of the adversay woul B. Browning, P. Rybski, J. Searock, and M. Veloso. Development of

be changing too quickly for any learning to prove useful, in" ~ a soccer-playing dynamically-balancing mobile robotPioceedings
which case we again would expect similar performances. of International Conference on Robotics and Automatiday 2004.

It is possible during execution that an expert miaht OSCiI_[8] Yoa_v Freund gnd Rob_ert E. Schapire.‘ A_decision-thgoretic general-
p g p g ization of on-line learning and an application to boostidgurnal of

late between failure and success. Within the weight update Computer and System Sciencg5:119-139, 1997.
of the rExp3formuIati0n, this will then induce an oscillation [©] Nick Littlestone and Manfred K. Warmuth. The weighted majority

. . . algorithm. Information and ComputatiqriL08:212—-261, 1994.
in exponent formulation. One argument might favor such 80] H. G. Nguyen, J. Morrell, K. Mullens, A. Burmeister, S. Miles,

oscillation, as it represents the true behavior of the expert. K. Thomas, and D. W. Gage. Segway robotic mobility platform. In
Indeed, as our intent for this algorithm is very domain _ SPIE Mobile Robots XV]iOctober 2004. _ _ _
ific. we value swift responses to our dynamic SOCCélrl] Herbert Robbins. Some aspects of the sequential design of experi-
Specitic, p y ments. Bulletin American Mathematical Societ§5:527-535, 1952.
environment. By contrast, other approaches might attempt] Reid Simmons and David Apfelbaum. A task description language for
minimize responses to domain instability. Note, however, that fOZOISCOtnUOg/ 'npmcee‘(’:ingsd‘)f %Oft‘f%fe”igg%” Intelligent Robotics
e : . : and Systemsvancouver Canada, October .
an oscillation !n gxpopent formulation _Wlll not necessarlly[13] Volodimir G. Vovk. Aggregating strategies. IRroceedings of the
cause an oscillation in the actual weight. In fact, such a = Third Annual Workshop on Computational Learning Thequgages

weight oscillation will only occur if the selection probability 371-383, 1990.

