CMU 15-896
Social choice 1: The basics

Teacher: Ariel Procaccia
Social choice theory

• A mathematical theory that deals with aggregation of individual preferences
• Origins in ancient Greece
• Formal foundations: 18th Century (Condorcet and Borda)
• 19th Century: Charles Dodgson
• 20th Century: Nobel prizes to Arrow and Sen
The voting model

- Set of voters $N = \{1, \ldots, n\}$
- Set of alternatives A, $|A| = m$
- Each voter has a ranking over the alternatives
- **Preference profile** = collection of all voters’ rankings

<table>
<thead>
<tr>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>c</td>
<td>b</td>
</tr>
<tr>
<td>b</td>
<td>a</td>
<td>c</td>
</tr>
<tr>
<td>c</td>
<td>b</td>
<td>a</td>
</tr>
</tbody>
</table>
Voting rules

• Voting rule = function from preference profiles to alternatives that specifies the winner of the election

• Plurality
 o Each voter awards one point to top alternative
 o Alternative with most points wins
 o Used in almost all political elections
More voting rules

• Borda count
 o Each voter awards \(m - k \) points to alternative ranked \(k \)’th
 o Alternative with most points wins
 o Proposed in the 18\(^{th}\) Century by the chevalier de Borda
 o Used for elections to the national assembly of Slovenia
 o Similar to rule used in the Eurovision song contest

Lordi, Eurovision 2006 winners
More voting rules

• Positional scoring rules
 - Defined by vector \((s_1, \ldots, s_m) \)
 - Plurality = \((1,0,\ldots,0) \), Borda = \((m - 1, m - 2, \ldots, 0) \)
• \(x \) beats \(y \) in a pairwise election if the majority of voters prefer \(x \) to \(y \)
• Plurality with runoff
 - First round: two alternatives with highest plurality scores survive
 - Second round: pairwise election between these two alternatives
More voting rules

• Single Transferable vote (STV)
 o $m - 1$ rounds
 o In each round, alternative with least plurality votes is eliminated
 o Alternative left standing is the winner
 o Used in Ireland, Malta, Australia, and New Zealand (and Cambridge, MA)
STV: Example

<table>
<thead>
<tr>
<th>2 voters</th>
<th>2 voters</th>
<th>1 voter</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>b</td>
<td>c</td>
</tr>
<tr>
<td>b</td>
<td>a</td>
<td>d</td>
</tr>
<tr>
<td>c</td>
<td>d</td>
<td>b</td>
</tr>
<tr>
<td>d</td>
<td>c</td>
<td>a</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>2 voters</th>
<th>2 voters</th>
<th>1 voter</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>b</td>
<td>c</td>
</tr>
<tr>
<td>b</td>
<td>a</td>
<td>b</td>
</tr>
<tr>
<td>c</td>
<td>c</td>
<td>a</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>2 voters</th>
<th>2 voters</th>
<th>1 voter</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>b</td>
<td>b</td>
</tr>
<tr>
<td>b</td>
<td>a</td>
<td>a</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>2 voters</th>
<th>2 voters</th>
<th>1 voter</th>
</tr>
</thead>
<tbody>
<tr>
<td>b</td>
<td>b</td>
<td>b</td>
</tr>
</tbody>
</table>

Carnegie Mellon University
Social choice axioms

• How do we choose among the different voting rules? Via desirable properties!

• Majority consistency = if a majority of voters rank alternative \(x \) first, then \(x \) should be the winner

Which of the rules we talked about is not majority consistent?
Marquis de Condorcet

• 18th Century French Mathematician, philosopher, political scientist
• One of the leaders of the French revolution
• After the revolution became a fugitive
• His cover was blown and he died mysteriously in prison
Condorcet winner

- Recall: x beats y in a pairwise election if a majority of voters rank x above y
- Condorcet winner beats every other alternative in pairwise election
- Condorcet paradox = cycle in majority preferences
Condorcet consistency

- Condorcet consistency = select a Condorcet winner if one exists

Which of the rules we talked about is Condorcet consistent?
Poll: What is the relation between majority consistency and Condorcet consistency?

3. Equivalent
4. Incomparable
More voting rules

• Copeland
 o Alternative’s score is \(\# \text{alternatives it beats} \) in pairwise elections
 o Why does Copeland satisfy the Condorcet criterion?

• Maximin
 o Score of \(x \) is \(\min_y |\{i \in N: x \succ_i y\}| \)
 o Why does Maximin satisfy the Condorcet criterion?
Application: Web Search

- Generalized Condorcet: if there is a partition X, Y of A such that a majority prefers every $x \in X$ to every $y \in Y$, then X is ranked above Y
- Assumption: spam website identified by a majority of search engines
- When aggregating results from different search engines, spam websites will be ranked last [Dwork et al., WWW 2001]
Application: Web Search

Google

bing

DuckDuckGo

overall
Metamorphosis

Charles Lutwidge Dodgson

Carroll

15896 Spring 2015: Lecture 1
Dodgson’s Rule

• Distance function between profiles: #swaps between adjacent candidates

• Dodgson score of $x = \text{the min distance from a profile where } x \text{ is a Condorcet winner}$

• Dodgson’s rule: select candidate that minimizes Dodgson score

• The problem of computing the Dodgson score is NP-complete!
Dodgson Unleashed

Voter 1: a, b, c, d, e
Voter 2: b, a, c, d, e
Voter 3: e, b, c, a, d
Voter 4: e, c, d, b, a
Voter 5: b, e, d, a, c
Awesome example

- Plurality: \(a\)
- Borda: \(b\)
- Condorcet winner: \(c\)
- STV: \(d\)
- Plurality with runoff: \(e\)

<table>
<thead>
<tr>
<th>33 voters</th>
<th>16 voters</th>
<th>3 voters</th>
<th>8 voters</th>
<th>18 voters</th>
<th>22 voters</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>b</td>
<td>c</td>
<td>c</td>
<td>d</td>
<td>e</td>
</tr>
<tr>
<td>b</td>
<td>d</td>
<td>d</td>
<td>e</td>
<td>e</td>
<td>c</td>
</tr>
<tr>
<td>c</td>
<td>c</td>
<td>b</td>
<td>b</td>
<td>c</td>
<td>b</td>
</tr>
<tr>
<td>d</td>
<td>e</td>
<td>a</td>
<td>d</td>
<td>b</td>
<td>d</td>
</tr>
<tr>
<td>e</td>
<td>a</td>
<td>e</td>
<td>a</td>
<td>a</td>
<td>a</td>
</tr>
</tbody>
</table>
Is social choice practical?

- UK referendum: Choose between plurality and STV as a method for electing MPs
- Academics agreed STV is better...
- ... but STV seen as beneficial to the hated Nick Clegg
- Hard to change political elections!
Computational social choice

• However:
 o in human computation systems...
 o in multiagent systems...
 the designer is free to employ any voting rule!

• Computational social choice focuses on positive results through computational thinking
Example: Robobees

- Robobees need to decide on a joint plan (alternative)
- Many possible plans
- Each robobee (agent) has a numerical evaluation (utility) for each alternative
- Want to maximize sum of utilities = social welfare
- Communication is restricted
Example: Robobees

• Approach 1: communicate utilities
 o May be infeasible
• Approach 2: each agent votes for favorite alternative (plurality)
 o $\log m$ bits per agent
 o May select a bad alternative

\[n/2 - 1 \text{ agents} \]

\[n/2 + 1 \text{ agents} \]
Example: Robobees

• Approach 3: each agent votes for an alternative with probability proportional to its utility

• Theorem [Caragiannis & P 2011]: if \(n = \omega(m \log m) \) then this approach gives almost optimal social welfare in expectation
Example: Pnyx

A powerful & user-friendly preference aggregation tool

<table>
<thead>
<tr>
<th>Unique winner</th>
<th>Most preferred alternative</th>
<th>Approved alternatives</th>
<th>Linear rankins</th>
<th>Rankings with ties</th>
<th>Pairwise comparisons</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plurality rule</td>
<td>Approval voting</td>
<td>Borda's rule</td>
<td>Bucket</td>
<td>Borda's rule</td>
<td>Young's generalization of Borda's rule</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lottery</th>
<th>Random dictatorship</th>
<th>Nash's rule</th>
<th>Maximal lotteries</th>
<th>Maximal lotteries</th>
<th>Maximal lotteries</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Ranking without ties</th>
<th>Plurality scores</th>
<th>Approval voting scores</th>
<th>Kemeny's rule</th>
<th>Kemeny's rule</th>
<th>Kemeny's rule</th>
</tr>
</thead>
</table>