CMU 15-251

Time complexity

Teachers:
Anil Ada
Ariel Procaccia (this time)
Course Overview

<table>
<thead>
<tr>
<th></th>
<th>Old</th>
<th>New</th>
</tr>
</thead>
<tbody>
<tr>
<td>Not CS</td>
<td>Graphs, probability</td>
<td>Number theory</td>
</tr>
<tr>
<td>CS</td>
<td>Today</td>
<td>Thursday + most of the course</td>
</tr>
</tbody>
</table>
The big O
Adding two n-bit numbers

+ * * * * * * * * * * * * * * * *

* * * * * * * * * * * * * * * *
Adding two n-bit numbers
Adding two n-bit numbers
Adding two n-bit numbers

Grade school addition
Time complexity

- $T(n) =$ amount of time grade school addition takes to add two n-bit numbers
- What do we mean by “time”?
- Given algorithm will take different amounts of time on the same input depending on hardware, compiler, ...

How do I define “time” in a way that transcends implementation details?
A great idea

• On any reasonable computer, adding 3 bits and writing down the 2 bit answer can be done in constant time
• For a computer M, let c be the time it takes to perform \square on M
• The total time to add two n-bit numbers using grade school addition on M is $c \cdot n$
• On M', the time to perform \square could be c'
• The total time on M' is $c'n$
A great idea

• The fact that we get a line is **invariant** under different implementations

• Different machines result in different slopes, but the **running time grows linearly**
A GREAT IDEA

• Conclusion: Grade school addition is a linear time algorithm

This process of abstracting away details and determining the rate of resource usage in terms of the problem size n is one of the fundamental ideas in computer science
Multiplying two n-bit numbers

$\begin{array}{cccccc}
\times \\
\hline
& * & * & * & * & * & * & * \\
& * & * & * & * & * & * & * \\
& * & * & * & * & * & * & * \\
& * & * & * & * & * & * & * \\
& * & * & * & * & * & * & * \\
& * & * & * & * & * & * & * \\
& * & * & * & * & * & * & * \\
& * & * & * & * & * & * & * \\
& * & * & * & * & * & * & * \\
& * & * & * & * & * & * & * \\
& * & * & * & * & * & * & * \\
& * & * & * & * & * & * & * \\
\hline
\end{array}$
Linear vs. quadratic

• Total time to multiply: cn^2
• Addition is linear time, multiplication is quadratic time
• Regardless of the constants, the quadratic curve will eventually dominate the linear curve
Nursery school addition

- To add two n-bit numbers a and b, start at a and increment (by 1) b times
- What is $T(n)$?
- If $b = 00 \cdots 0$, NSA takes almost no time
- **Poll 1:** If $b = 11 \cdots 1$, NSA takes time
 1. $c (\log n)^2$
 2. $cn \log n$
 3. cn^2
 4. $cn2^n$
Worst case time

Worst-case running time $T(n)$ of algorithm $A = \text{the maximum over all feasible inputs } x \text{ of size } n \text{ of the running time of } A \text{ on } x$
Kindergarten multiplication

• To multiply two \(n \)-bit numbers \(a \) and \(b \), start at \(a \) and add \(a \ b - 1 \) times

\[
T(n) = cn2^n
\]

• Nursery school addition and kindergarten multiplication are exponential; they scale horribly!

• Grade school methods are more efficient; therefore we can add and multiply large numbers
More formally: big O

- For a function $f: \mathbb{N} \to \mathbb{N}$, $f(n) = O(n)$ if there exists a constant c such that for all sufficiently large n, $f(n) \leq cn$
- Informally: There is a line that can be drawn that stays above f from some point on
More formally: Ω

- For a function $f: \mathbb{N} \rightarrow \mathbb{N}$, $f(n) = \Omega(n)$ if there exists a constant c such that for all sufficiently large n, $f(n) \geq cn$

- Informally: There is a line that can be drawn that stays below f from some point on
More formally: Θ

- For a function $f: \mathbb{N} \to \mathbb{N}$, $f(n) = \Theta(n)$ if $f(n) = \mathcal{O}(n)$ and $f(n) = \Omega(n)$
- Informally: f can be sandwiched between two lines from some point on
More formally and generally

- \(f(n) = O(g(n)) \) if there exists a constant \(c \) such that for all sufficiently large \(n \),
 \[f(n) \leq c \cdot g(n) \]
- \(f(n) = \Omega(g(n)) \) if there exists a constant \(c \) such that for all sufficiently large \(n \),
 \[f(n) \geq c \cdot g(n) \]
- \(f(n) = \Theta(n) \) if \(f(n) = O(g(n)) \) and \(f(n) = \Omega(g(n)) \)
Exercises

- $n^4 + 3n + 22 = O(n^4)$?
- $n^4 + 3n + 22 = \Omega(n^4 \log n)$?
- **Poll 2**: Which of the following statements is true:
 1. $\ln n = O(\log n)$
 2. $\ln n = \Omega(\log n)$
 3. Both
 4. Neither
Exercises

• Poll 3: $\log(n!) = ?$
 1. $\Theta(n)$
 2. $\Theta(n \log n)$
 3. $\Theta(n^2)$
 4. $\Theta(2^n)$

• Poll 4: Which of the following statements is true:
 1. $f = O(g)$ and $g = O(h) \Rightarrow f = O(h)$
 2. $f = O(h)$ and $g = O(h) \Rightarrow f = O(g)$
 3. Both
 4. Neither
Names for growth rates

• Linear time: \(T(n) = O(n) \)
• Quadratic time: \(T(n) = O(n^2) \)
• Polynomial time: there exists \(k \in \mathbb{N} \) such that \(T(n) = O(n^k) \)
 o Example: \(13n^{28} + 11n^{17} + 2 \)

Polynomial time = computationally efficient
Names of growth rates

- **Exponential time:** there exists $k \in \mathbb{N}$ such that $T(n) = O(k^n)$
 - Example: $T(n) = n2^n = O(3^n)$
- **Logarithmic time:** $T(n) = O(\log n)$
 - A logarithmic-time algorithm can’t read all of its input
 - The running time of binary search is logarithmic
Limits of the possible

Log-log plot with 1 step = 1 μs
Two similar problems

- **Hamiltonian-Cycle:**
 - Instance: A connected graph
 - Input size: Number of vertices
 - Question: Is there a tour visiting each vertex exactly once?

- Complexity:
 - Brute force algorithm: $n!$
 - 1970: 2^n
 - 2010: 1.657^n
Two similar problems

- **Eulerian-Cycle:**
 - Instance: A connected graph
 - Input size: Number of vertices
 - Question: Is there a tour visiting each edge exactly once?

- Algorithm: The answer is “yes” if and only if each vertex has even degree; complexity $O(n^2)$

- Theorem [Euler]: The algorithm correctly solves Eulerian-Cycle
Polynomial time

The huge gap in running time between polynomial time and exponential time usually corresponds to a huge gap in our understanding of the problem.
Dragon Age: Inquisition
Representation

• The way a problem is represented can have a huge impact on its complexity

• Knapsack:
 o Instance: \(n \) items 1, \(\ldots \), \(n \) with values \(v_1, \ldots, v_n \) and weights \(w_1, \ldots, w_n \), capacity \(B \), value \(V \)
 o Input size: We’ll talk about this later
 o Question: Is there a subset of items \(S \) such that \(\sum_{i \in S} w_i \leq B \) and \(\sum_{i \in S} v_i \geq V \)
Representation

- **Dynamic programming algorithm for Knapsack:**
 - $n \times B$ matrix A
 - $A(i, j) = \max\{A(i - 1, j), A(i - 1, j - w_i) + v_i\}$

<table>
<thead>
<tr>
<th>Item</th>
<th>value</th>
<th>weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>5</td>
<td>2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>5</td>
<td>5</td>
<td>8</td>
<td>8</td>
</tr>
</tbody>
</table>

$B = 5$

* Not for the exam
Representation

- Running time of the dynamic programming algorithm: $O(nB)$

- **Binary** representation for KNAPSACK:
 - Input size: at most $2n \cdot \max\{\log B, \log V\}$
 - Exponential running time!

- **Unary** representation for KNAPSACK:
 - Input size: around $2n \cdot \max\{B, V\}$
 - Linear running time!
Cool growth rates: 2stack

• 2STACK(0) = 1
• 2STACK(n) = 2^{2STACK(n - 1)}
• Examples:
 o 2STACK(1) = 2
 o 2STACK(2) = 4
 o 2STACK(3) = 16
 o 2STACK(4) = 65536
 o 2STACK(5) = yikes!
Cool growth rates: \log^*

- $\log^*(n) = \# \text{times you have to apply the log function to } n \text{ to make it } \leq 1$

- Examples:
 - $2\text{STACK}(1) = 2 \quad \log^*(2) = 1$
 - $2\text{STACK}(2) = 4 \quad \log^*(4) = 2$
 - $2\text{STACK}(3) = 16 \quad \log^*(16) = 3$
 - $2\text{STACK}(4) = 65536 \quad \log^*(65536) = 4$
 - $2\text{STACK}(5) = \text{yikes!} \quad \log^*(\text{yikes!}) = 5$
Cool growth rates: \log^*

- There’s no way \log^* is actually useful, right?
- Multiplication takes $O(n \log n \cdot 2^{\log^* n})$

Optimal Social Choice Functions: A Utilitarian View

CRAIG BOUTILIER, University of Toronto
IOANNIS CARAGIANNIS, University of Patras and CTI
SIMI HABER, Carnegie Mellon University
TYLER LU, University of Toronto
ARIEL D. PROCACCIA, Carnegie Mellon University
OR SHEFFET, Carnegie Mellon University

THEOREM 3.3. There exists a randomized social choice function f such that for every $\bar{\sigma} \in (S_m)^n$, $\text{dist}(f, \bar{\sigma}) = \mathcal{O}(\sqrt{m} \cdot \log^* m)$.
What we have learned

• Definitions / facts:
 - Big O notation
 - Names for growth rates

• Principles / problem solving:
 - Why polynomial time?
 - Representation matters