Announcements

- We have a midterm this Wednesday, October 14.

PRIMES is in P

Consider the following algorithm that determines if a given number is prime or not.

```python
isPrime(N):
    if (N < 2):
        return False
    for factor in {2,3,4,...,N-1}:
        if (N % factor == 0):
            return False
    return True
```

(a) Assume that the input to the function is encoded in binary. What is the length of the input, in terms of N, using this encoding scheme?

(b) What is the running time (in Big-Oh) of the long division algorithm you have learned in grade school?

(c) What is the running time of the above function isPrime in Big-Oh as a function of the input length?

(a) Approximately $\lg N$.

(b) It takes $O(mn)$ time to divide an n-bit number by an m-bit number.

(c) $O(n^2 \cdot 2^n)$ where n is the length of the input. (Note that we are testing up to $N \approx 2^n$ factors.)

Decisions

Prove whether or not each of the following are decidable.

(a) $S = \{ M \mid \text{there exists a circuit family that decides } L(M) \}$

(b) $T = \{ M \mid L(M) \in P \}$

Fun fact: The set of winning positions for white in generalized $n \times n$ chess is known to be decidable but is also known not to be in P.
(a) Recall that every boolean function is decidable by a circuit family. We can decide \(S \) by simply returning \(\text{True} \).
(b) If we had a decider for \(T \) (call it \(MP \)), we could construct the following decider for HALTS:

```python
def HALTS(<M,x>):
    def HELPER(b):
        run M(x)
        if b denotes a winning position for white in generalized chess, accept
        else reject
        return not(MP(<HELPER>))
```

Note that \(L(HELPER) \) is in \(P \) iff \(M(x) \) halts.

Uncounting

Are the following sets countable?

(a) The set of directed trees
(b) The set of circuit families
(c) Bonus: The set of circuit families that decide regular languages over the alphabet \(\{0, 1\} \)

(a) Yes, by the CS method. (What might be your choice of \(\Sigma \) here?)
(b) No, by injection from \(\{0, 1\}^\infty \). (Example: for an infinite binary string \(b \), create a circuit family \(C \) such that \(C_i \) is a circuit that always returns 1 if \(b_i = 1 \) and always returns 0 otherwise.)

Sneaky structures (part 2)

Prove by induction that a graph with maximum degree up to \(k \) must be \((k + 1)-colorable \).

Warning: induction on graphs can lead to subtle logical pitfalls if you aren’t careful. Contrast this proof with the bad induction from recitation 1 and understand why the latter doesn’t work.

First, we fix \(k \in \mathbb{N} \). Then we induct on \(n \), the number of vertices in the graph.

Base case \((n = 1)\): Duh. (We know \(k + 1 \geq 1 \).)
Induction hypothesis: Suppose for some \(n \in \mathbb{N}^+ \) that all graphs having up to \(n \) vertices and maximum degree up to \(k \) must be \((k + 1)-colorable \).
Induction step: Let \(G \) be a graph on \(n + 1 \) vertices and having maximum degree up to \(k \). Remove some vertex \(v \) and all of its incident edges from \(G \) to get \(G' \), a graph on \(n \) vertices. Note that \(G' \) still has maximum degree at most \(k \). By the IH, \(G' \) is \((k + 1)-colorable \). Consider some \(k \)-coloring of \(G' \), then add \(v \) and the removed edges back in. We know that \(v \) had at most \(k \) neighbors, so even if they all are different colors, there is a “free” color remaining that we can assign to \(v \). So we see that \(G \) is \((k + 1)-colorable \).

Counting is hard

Define a function smash where \(\text{smash}(n) \) returns the in-order concatenation of all the numbers \(0 \rightarrow n \).

For example, \(\text{smash}(10) = \text{“012345678910“} \). Show that \(L = \{ \text{smash}(n) \mid n \in \mathbb{N} \} \) is irregular.
AFSOC that some DFA with \(s \) states accepts exactly \(L \). Now feed the strings smash(0), smash(1), ... smash(\(s \)) to the DFA. By PHP, some smash(\(i \)) and smash(\(j \)) where \(i \neq j \) must end in the same state. Now consider what happens when you concatenate \(i + 1 \) to both of these strings: the DFA will either accept or reject both, but it should accept only the former. Contradiction.