15-251: Great Theoretical Ideas In Computer Science

Recitation 6 Solutions

Coloring

(a) How many ways are there to \(k \)-color a tree with \(v \) vertices?

\[k \cdot (k-1)^{v-1}. \]

Color one node (\(k \) choices). Then, color in nodes that are neighbors of an already-colored node, one at a time (\(k-1 \) choices at each step, since exactly 1 neighbor is already colored). This will color all nodes, since trees are connected, and no uncolored node will border two colored nodes at any point because it is a tree and this would imply a cycle, which trees don't have.

Graph-iti, Probably

(a) Let \(G = (V, E) \) be a connected graph and randomly choose a subgraph \(G' = (V', E') \) of \(G \) such that each vertex in \(V \) is in \(V' \) with probability \(p \), and each edge is in \(E' \) if and only if both of its incident vertices are in \(V' \).

Construct a set of vertices \(H \) as follows: for each edge \(e \) in \(E' \), randomly choose one of its incident vertices to not be in \(H \). \(H \) is the set of vertices that were never chosen. Find a value of \(p \) that \(|H| \geq \frac{n^2}{4m} \) where \(n = |V| \) and \(m = |E| \), respectively.

First, note that every edge in \(E' \) will remove at most 1 node from \(V' \) to get to \(H \).
So \(E[|H|] \geq E[|V'|] - |E'| \). By linearity of expectation,
\[E[|H|] \geq E[|V'|] - E[|E'|]. \]

Note that \(E[|V'|] \) is just \(pn \) (number of vertices in the original graph times probability of choosing a vertex), and \(E[|E'|] \) is just \(p^2 m \). So we have
\[E[|H|] \geq pn - p^2 m. \]
If we let \(p = \frac{n}{2m} \), then we get exactly our equation to be proven:
\[E[|H|] \geq \frac{n^2}{2m} - \frac{n^2}{4m} = \frac{n^2}{4m}. \]
(Note that \(\frac{n}{2m} < 1 \) because the graph is connected, meaning that there are at least \(n-1 \) edges.)

Hypercubes and Ultracubes

(a) An \(n \)-cube is a cube in \(n \) dimensions. A cube in one dimension is a line segment; in two dimensions, it’s a square, in three, a normal cube, and in general, to go to the next dimension, a copy of the cube is made and all corresponding vertices are connected. If we consider the cube to be composed of the vertices and edges only, show that every \(n \)-cube has a Hamiltonian cycle.
A Very Average Tree

(a) What is the average number of spanning trees for simple labeled graphs with n vertices?

Let $s(G)$ be the number of spanning trees of a graph G, and let $g(T)$ be the number of graphs having tree T as a spanning tree. Then

$$\sum_G s(G) = \sum_T g(T)$$

(you can count the number of spanning trees of a graph and sum across graphs, or count the number of graphs for a tree and sum across trees). There are $2\binom{n}{2}$ possible graphs on n vertices (because there are $\binom{n}{2}$ possible edges), so

$$\frac{\sum_G s(G)}{2\binom{n}{2}} = \frac{\sum_T g(T)}{2\binom{n}{2}} = \text{our average.}$$

Note that $|E(T)| = n - 1$ (the number of edges in the tree). Note that to count the graphs that have T as a spanning tree, we simply count the number of ways to pick edges not in T: $2\binom{n}{2} - (n - 1) = g(T)$ for all T. Since by Cayley’s formula, there are n^{n-2} trees on n vertices, the average is

$$\frac{n^{n-2} \cdot 2\binom{n}{2} - (n - 1)}{2\binom{n}{2}} = \frac{n^{n-2}}{2^{n-1}}.$$

A Little Time Complexity

Assume all functions are from the positive integers to the positive integers.

(a) Prove or disprove: “For all f, g, at least one of $f \in O(g)$, $g \in O(f)$ is true.”

False. Counterexample:

$$f(n) = \begin{cases} n!, & n \text{ is even} \\ (n-1)!, & n \text{ is odd} \end{cases}, \quad g(n) = \begin{cases} (n-1)!, & n \text{ is even} \\ n!, & n \text{ is odd} \end{cases}$$

(b) Prove or disprove: “For all f, g, $f(n) \in \Theta(g(n))$ implies that $f(n)^3 \in \Omega(g(n)^2)$.”
True.
\(f(n) \in \Theta(g(n)) \Rightarrow f(n) \in \Omega(g(n)) \)
So there exist \(c, N \) such that \(f(n) \geq c \cdot g(n) \) for all \(n \geq N \).
Cubing both sides, \(f(n)^3 \geq c^3 g(n)^3 \geq c^3 g(n)^2 \) since \(g(n) \) is a positive integer.
So there exist \(c', N' \) such that \(f(n)^3 \in \Omega(g(n)^2) \): let \(c' = c^3 \) and \(N' = N \).

(c) Prove or disprove: “For all \(f, g \), \(f(n) \in \Theta(g(n)) \) implies that \(f(n) \notin \Theta(g(n)^2) \)

False. Counterexample: \(f(n) = g(n) = 1 \). \(g(n)^2 = 1 \), therefore \(f(n) \in \Theta(g(n)^2) \).

(d) Prove or disprove: “For all \(f \), if \(f(n) \in \Omega(n^k) \) for all \(k \), then \(f(n) \in \Omega(2^n) \).

False. Counterexample: \(f(n) = \lfloor 1.5^n \rfloor \). This grows faster than any polynomial function but slower than \(2^n \).